• Title/Summary/Keyword: P34 protein

Search Result 1,026, Processing Time 0.03 seconds

Inheritance of Kunitz Trypsin Inhibitor and P34 Protein in Soybean Seed (콩 종자에서 쿠니츠트립신인히비터와 P34 단백질의 유전)

  • Han, Eun-Hui;Sung, Mi-Kyung;Baek, Woon-Jang;Shim, Sang-In;Kim, Min-Chul;Chung, Jong-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.78-82
    • /
    • 2012
  • Soybean [$Glycine$ $max$ (L.) Merr.] protein is a high quality source for food and feed. But, antinutritional factors in the raw mature soybean are exist. Kunitz trypsin inhibitor (KTI) protein is a main antinutritional factor in soybean seed. Also, P34 protein, referred as $Gly$ $m$ Bd 30K, has been identified as a predominant immunodominant allergen. Genetic relationship between KTI protein and P34 protein could be useful in soybean breeding program for the genetic elimination or reduction of these factors. The objective of this study was to determine the independent inheritance or linkage between KTI protein and P34 protein in soybean seed. A total of 479 $F_2$ seeds were obtained from the cross of 07B1 and PI567476 parents. KTI protein and relative amount of P34 protein were analysed from $F_2$ seeds harvested from the F1 plants by using SDS-PAGE and Western blot analysis. The segregation ratios of 3 : 1 for KTI protein (353 KTI protein present : 126 KTI protein absent) and relative amount of P34 protein (363 normal amount of P34 protein : 116 low amount of P34 protein). The segregation ratio of 3 : 1 suggested that KTI protein and relative amount of P34 protein in mature soybean seed were controlled by a single major gene. The segregation ratios of 9 : 3 : 3 : 1 (266 KTI protein present, normal amount of P34 protein: 88 KTI protein present, low amount of P34 protein: 102 KTI protein absent, normal amount of P34 protein: 23 KTI protein absent, low amount of P34 protein) and Chi-square value (${\chi}^2$=3.31, P=0.346) were observed in $F_2$ seeds. This data showed that KTI protein was inherited independently with relative amount of P34 protein in soybean. These results will be helpful in breeding program for selecting the line with lacking KTI protein and reduced amount of P34 protein in soybean.

Inheritance of P34 Allergen Protein in Mature Soybean Seed

  • Sung, Mi Kyung;Seo, Jun Soo;Kim, Kyung Roc;Han, Eun Hui;Nam, Jin Woo;Kang, Dal Soon;Jung, Woo Suk;Kim, Min Chul;Shim, Sang In;Kim, Kyung Moon;Chung, Jong Il
    • Korean Journal of Breeding Science
    • /
    • v.43 no.2
    • /
    • pp.115-119
    • /
    • 2011
  • Soybean proteins are widely used for human and animal feeds worldwide. The use of soybean protein has been expanded in the food industry due to their excellent nutritional benefits. But, antinutritional and allergenic factors are present in the raw mature soybean. P34 protein, referred as Gly m Bd 30K, has been identified as a predominant immunodominant allergen. The objective of this research is to identify the genetic mode of P34 protein for the improvement of soybean cultivar with a very low level of P34 protein. Two $F_2$ populations were developed from the cross of "Pungsannamulkong" ${\times}$ PI567476 and "Gaechuck2ho" ${\times}$ PI567476 (very low level of P34 protein). Relative amount of P34 protein was observed by Western blot analysis. The observed data for the progeny of "Pungsannamulkong" and PI567476 were 133 seeds with normal content of P34 protein and 35 seeds with very low level of P34 protein (${\chi}^2=1.157$, P=0.20-0.30). For the progeny of "Gaechuck#1" and PI567476, the observed data were 177 seeds with normal content of P34 protein and 73 seeds with very low level of P34 protein (${\chi}^2=2.353$, P=0.10-0.20). From pooled data, observed data were 310 seeds with normal content of P34 protein and 108 seeds with very low level of P34 protein (${\chi}^2=0.156$, P=0.50-0.70). The segregation ratio (3:1) and the Chi-square value obtained from the two populations suggested that P34 protein in mature soybean seed is controlled by a single major gene. Single gene inheritance of P34 protein was confirmed in 32 $F_2$ derived lines in $F_3$ seeds, which were germinated from the low level of P34 protein obtained from the cross of "Pungsannamulkong" and PI567476. These results may provide valuable information to breed for new soybean line with low level of P34 protein and identification of molecular markers linked to P34 locus.

Down-regulation of miR-34a Expression in Cervical Intraepithelial Neoplasia with Human Papillomavirus Infection and Its Relationship with p53 Expression

  • Lee, Kyung Eun
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.348-352
    • /
    • 2013
  • microRNAs (miRNAs) play pivotal roles in controlling cell proliferation and differentiation. miRNA expression in human is becoming recognized as a new molecular mechanism of carcinogenesis. microRNA-34a (miR-34a), a member of the p53 network, was found to be regulated in multiple types of tumor. The purpose of this study was to define roles of miR-34a expression in cervical intraepithelial neoplasia with human papillomavirus infection, and its relationship with p53 protein expression. This study was performed to analyze expression of miR-34a by using qRT-PCR, and to evaluate p53 protein expression by using immunohistochemistry in 40 cases. Down-regulation of miR-34a expression was detected in 27 (67.5%) out of 40 cases and Immunoreactivity for p53 was found in 17 (42.5%) out of 40 cases. Nineteen (82.6%) of the 23 cases with a negative p53 expression showed a down-regulation miR-34a expression, there was a significant associations between miR-34a and p53 protein expression (P=0.04). These results suggest that miRNA-34a expression tend to be reduced depending on the advanced histologic grade, and down-regulation of miR-34a expression might be associated with inactivation of p53 protein expression by human papillomavirus infection.

Expression of the C-terminal of 34kDa protein of Mycobacterium paratuberculosis (Mycobacterium paratuberculosis의 34kDa C-terminal 단백질의 발현)

  • Kim, Doo;Park, Hyung-wook
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.86-93
    • /
    • 2000
  • Paratuberculosis (Johne's disease), a chronic enteritis produced by Mycobacterium paratuberculosis, affects a large proportion of ruminants in all continents and causes important economic losses. The identification of well-characterized and species-specific components of M paratuberculosis would provide the means to improve the specificity and sensitivity of immunodiagnostic assays for Johne's disease. The aims of this study were to express the recombinant C-terminal of 34kDa protein (rC34P) of M paratuberculosis in E coli and to investigate the effectiveness of this protein in detecting antibodies to the native protein in sera from paratuberculosis infected cattle. The C-terminal of the gene encoding the 34kDa protein was amplified by polymerase chain reaction from the chromosomal DNA of M paratuberculosis (ATCC 19698) and cloned into vector pGEX-4T-2. Then, cloned plasmid was transformed into E coli DH5${\alpha}$ and the rC34P was overexpressed. The rC34P was purified by affinity chromatography and gel filtration. The rC34P was examined antigenicity by Western blot. The rC34P was reactive with culture positive bovine serum and hyperimmune rabbit anti-M paratuberculosis serum but was not reactive with culture negative bovine serum and tuberculin positive bovine serum in Western blot. In conclusion, the rC34P produced in this study is expected as a useful candidate for antigen in serological diagnosis of Johne's disease.

  • PDF

Early recognized antigen (p34) of Toxoplasma gondii after peroral ingestion of tissue cyst forming strain (Me49 strain) in mice

  • Park, Yun-Kyu;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.3
    • /
    • pp.157-162
    • /
    • 1999
  • Serum from mouse orally ingested with tissue cyst forming stain (Me49) of Toxoplasma gondii was assayed by Western blot and immunofluorescene assay (IFA) to establish early responses in antigenicity of the parasite in mouse model of foodborne toxoplasmosis. Sera were collected weekly to blot the RH antigen transferred onto nitrocellulose paper after being separated by 12% SDS-PAGE. With the second week serum, 34 kDa protein (p34) was detected uniquely, and all antigens of T.gondii were detected with the sera from 3 or 4 weeks. p34 was not a member of the major surface membrane proteins and confirmed to be localized in the rhoptry by IFA. It was secreted into parasitophorous vacuolar membrane (PVM) during the entry into host cells. 10.3% of sera detected p34, while all the ELISA positive sera detected the band. It has diagnostic usefulness of presumed T.gondii infection. We suggest the name of the p34 protein as ROP9.

  • PDF

Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system

  • Ryu, Kyoung-Seok;Choi, Yun-Seok;Ko, Jun-Sang;Kim, Seong-Ock;Kim, Hyun-Jung;Cheong, Hae-Kap;Jeon, Young-Ho;Choi, Byong-Seok;Cheong, Chae-Joon
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.852-857
    • /
    • 2008
  • Little attention has been paid to the specificity between E2 and the target protein during ubiquitination, although RING-E3 induces a potential intra-molecular reaction by mediating the direct transfer of ubiquitin from E2 to the target protein. We have constructed artificial E2 fusion proteins in which a target protein (p27) is tethered to one of six E2s via a flexible linker. Interestingly, only three E2s (UbcH5b, hHR6b, and Cdc34) are able to ubiquitinate p27 via an intra-molecular reaction in this system. Although the first ubiquitination of p27 (p27-Ub) by Cdc34 is less efficient than that of UbcH5b and hHR6b, the additional ubiquitin attachment to p27-Ub by Cdc34 is highly efficient. The E2 core of Cdc34 provides specificity to p27, and the residues 184-196 are required for possessive ubiquitination by Cdc34. We demonstrate direct E2 specificity for p27 and also show that differential ubiquitin linkages can be dependent on E2 alone.

Development of SSLP Marker Targeted to P34 Null Gene in Soybean (콩 P34 단백질 결핍 유전자를 이용한 SSLP 마커 개발)

  • Yang, Kiwoung;Ko, Jong-Min;Lee, Young-Hoon;Jeon, Myeong Gi;Jung, Chan-Sik;Baek, In-Youl;Kim, Hyun-Tae;Park, Keum-Yong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.502-506
    • /
    • 2010
  • Soybean seed possesses about 15 allergenic proteins recognized by IgEs from soy-sensitive human. The allergenic impact of soybean proteins limit its extensive usage in a broad range of processed foods. Soybean protein P34 or Gly m Bd 30k of the cysteine protease family is one of the major allergen of the soybean seed. P34-null soybean, PI567476, was identified among soybean (Glycine max & Glycine soja Sieb. and Zucc) of approximately 16,226 accessions from USDA soybean germplasm screened. Also, for P34 gene (Williams 82; whole genome sequence cultivar) and P34 null gene (PI567476) comparative analysis of sequences listed in the NCBI database showed the presence of a SSLP (Simple Sequence Length Polymorphism) of 4 base pair. So, a SSLP marker was designed to reveal the polymorphism of the locus. In this study, a population of 339 $F_2$ recombinant inbred lines generated by cross between Taekwang (Glycine max) and PI567476 was used to select $F_{2:3}$ plant of a P34 null gene. The result separation rate Taekwang type, heterozygous type and PI567476 type were shown in 85: 187: 67 since single gene is concerned in as the separation rate of 1:2:1 in $X^2{_{0.05}}=5.99$, df=2. In future, selected plant will identify protein level, whether P34 null protein is equal to P34 null gene.

Effects of Formalin Treated Soy Bean as a Source of Rumen Undegradable Protein on Rumen Functions of Non-lactating Dairy Cows on Concentrate Based-diets

  • Kanjanapruthipong, J.;Vajrabukka, C.;Sindhuvanich, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1439-1444
    • /
    • 2002
  • An objective of this study was to determine the effects of increasing contents of rumen undegradable protein (RUP) from formalin treated soy bean (FSBM) on rumen functions. Four rumen canulated non-lactating cows were randomly allocated to total mixed rations (TMR) containing different proportions of soy bean meal (SBM) and FSBM. Of rumen fermentation characteristics, concentrations of ruminal fluid ammonia and molar proportions of isoacids decreased with increasing contents of RUP in diets (p<0.01). The animals on TMR containing only SBM gained less weight and had smaller rumen volume than those on TMR containing RUP from FSBM (p<0.05). Organic matter and neutral detergent fiber digestibility in sacco were not different (p>0.05). The density of protozoa particularly small Entodinium sp. in ruminal fluid was higher in animal fed TMR containing SBM:FSBM (34:66) and FSBM than those fed TMR containing SBM:FSBM (66:34) and SBM (p<0.01). Total viable count, and net microbial protein synthesis as indicated by purine derivatives in urine increased with increasing contents of RUP from FSBM (p<0.01). It can be concluded that a reduction in net microbial protein synthesis in the rumen with increasing contents of RUP in the diet can be due to the reduction of preformed protein available for microbial growth as well as an increased turnover rate of microbial cells by predatory activity of protozoa.

Performance and Carcass Composition of Broilers under Heat Stress : I. The Effects of Dietary Energy and Protein

  • Al-Batshan, H.A.;Hussein, E.O.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.914-922
    • /
    • 1999
  • An experiment was conducted to determine the effects of dietary energy and protein on performance and carcass composition of broilers under heat stress during the growing period (3-6 weeks). A factorial arrangement of three levels of energy (3.0, 3.2 and 3.4 kcal/g), three levels of protein (18, 20 and 22%), an two rearing temperatures were used in this study. Groups of birds were kept under moderate temperature ($24{\pm}1^{\circ}C/24h$) or hot cycling temperature ($26-34^{\circ}C/6h$, $34{\pm}1^{\circ}C/12h$, and $34-26^{\circ}C/6h$). Body weight (BW), weight gain (WG), feed intake (FI), feed conversion (feed : gain) (FC), carcass weight (CW), carcass yield (YP), breast meat (BM), abdominal fat (AF), drumsticks (DS), and thighs (TH) percentages were determined at the end of the experiment. Hot cycling temperature significantly (p<0.05) decreased BW, WG, FI, CW, and BM, increased FC, YP, DS, and TH but did not affect AF. High energy significantly (p<0.05) increased BW, WG, CW, YP, AF, and TH, decreased FI and FC but did not affect BM or DS. This improvement was observed only under moderate temperature resulting in significant (p<0.05) energy by temperature interaction. High protein significantly (p<0.05) increased BW, WG, CW and BM, decreased AF but did not affect FI, FC, TP, DS, or TH. There were no significant protein by temperature interactions for any of the parameters tested except CW. It is concluded, under the conditions imposed in this experiment, that increasing dietary energy did not alleviate the depressing effect of heat stress while increasing dietary protein up to 22% improved the performance of broilers irrespective of rearing temperature.

Comparison of Emulsion-stabilizing Property between Sodium Caseinate and Whey Protein Concentrate: Susceptibility to Changes in Protein Concentration and pH

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.610-617
    • /
    • 2009
  • The stability of corn oil-in-water emulsions coated by milk proteins, sodium caseinate (CAS), or whey protein concentrate (WPC), was compared under the environmental stress of pH change. Emulsions were prepared at 0.1 of protein:oil because the majority of droplets were relatively small ($d_{32}=0.34$ and $0.35\;{\mu}m$, $d_{43}=0.65$ and $0.37\;{\mu}m$ for CAS- and WPC-emulsions, respectively) and there was no evidence of depletion flocculation. As the pH of the emulsions was gradually dropped from 7 to 3, there was no significant difference in the electrical charges of the emulsion droplets between the 2 types of emulsions. However, laser diffraction measurements, microscopy measurements, and creaming stability test indicated that WPC-emulsions were more stable to droplet aggregation than CAS-emulsions under the same circumstance of pH change. It implies that factors other than electrostatic repulsion should contribute to the different magnitude of response to pH change.