Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system

  • Ryu, Kyoung-Seok (Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Choi, Yun-Seok (Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Ko, Jun-Sang (Department of Chemistry and National Creative Research Initiative Center, KAIST) ;
  • Kim, Seong-Ock (Department of Chemistry and National Creative Research Initiative Center, KAIST) ;
  • Kim, Hyun-Jung (Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Cheong, Hae-Kap (Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Jeon, Young-Ho (Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Choi, Byong-Seok (Department of Chemistry and National Creative Research Initiative Center, KAIST) ;
  • Cheong, Chae-Joon (Magnetic Resonance Team, Korea Basic Science Institute)
  • Published : 2008.12.31


Little attention has been paid to the specificity between E2 and the target protein during ubiquitination, although RING-E3 induces a potential intra-molecular reaction by mediating the direct transfer of ubiquitin from E2 to the target protein. We have constructed artificial E2 fusion proteins in which a target protein (p27) is tethered to one of six E2s via a flexible linker. Interestingly, only three E2s (UbcH5b, hHR6b, and Cdc34) are able to ubiquitinate p27 via an intra-molecular reaction in this system. Although the first ubiquitination of p27 (p27-Ub) by Cdc34 is less efficient than that of UbcH5b and hHR6b, the additional ubiquitin attachment to p27-Ub by Cdc34 is highly efficient. The E2 core of Cdc34 provides specificity to p27, and the residues 184-196 are required for possessive ubiquitination by Cdc34. We demonstrate direct E2 specificity for p27 and also show that differential ubiquitin linkages can be dependent on E2 alone.



  1. Pickart, C. M. (2004) Back to the future with ubiquitin. Cell 116, 181-190
  2. Brzovic, P. S., Lissounov, A., Christensen, D. E., Hoyt, D. W. and Klevit, R. E. (2006) A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1- directed ubiquitination. Mol. Cell 21, 873-880
  3. Hao, B., Zheng, N., Schulman, B. A., Wu, G., Miller, J. J., Pagano, M. and Pavletich, N. P. (2005) Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF (Skp2) ubiquitin ligase. Mol. Cell 20, 9-19
  4. Wu, G., Xu, G., Schulman, B. A., Jeffrey, P. D., Harper, J. W. and Pavletich, N. P. (2003) Structure of a beta-TrCP1- Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF (beta-TrCP1) ubiquitin ligase. Mol. Cell 11, 1445-1456
  5. Christensen, D. E., Brzovic, P. S. and Klevit, R. E. (2007) E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol 14, 941-948
  6. Catic, A., Collins, C., Church, G. M. and Ploegh, H. L. (2004) Preferred in vivo ubiquitination sites. Bioinformatics 20, 3302-3307
  7. Shirane, M., Harumiya, Y., Ishida, N., Hirai, A., Miyamoto, C., Hatakeyama, S., Nakayama, K. and Kitagawa, M. (1999) Down-regulation of p27(Kip1) by two mechanisms, ubiquitin- mediated degradation and proteolytic processing. J. Biol. Chem. 274, 13886-13893
  8. Butz, N., Ruetz, S., Natt, F., Hall, J., Weiler, J., Mestan, J., Ducarre, M., Grossenbacher, R., Hauser, P., Kempf, D. and Hofmann, F. (2005) The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels. Exp. Cell Res. 303, 482- 493
  9. McKenna, S., Spyracopoulos, L., Moraes, T., Pastushok, L., Ptak, C., Xiao, W. and Ellison, M. J. (2001) Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination. J. Biol. Chem. 276, 40120-40126
  10. Matunis, M. J. (2002) On the road to repair: PCNA encounters SUMO and ubiquitin modifications. Mol. Cell 10, 441-442
  11. Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533
  12. Wu, K., Chen, A., Tan, P. and Pan, Z. Q. (2002) The Nedd8-conjugated ROC1-CUL1 core ubiquitin ligase utilizes Nedd8 charged surface residues for efficient polyubiquitin chain assembly catalyzed by Cdc34. J. Biol. Chem. 277, 516-527
  13. Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921-926
  14. Peng, J. (2008) Evaluation of proteomic strategies for analyzing ubiquitinated proteins. BMB Rep. 41, 177-183
  15. Melchior, F., Schergaut, M. and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612-618
  16. Lin, D., Tatham, M. H., Yu, B., Kim, S., Hay, R. T. and Chen, Y. (2002) Identification of a substrate recognition site on Ubc9. J. Biol. Chem. 277, 21740-21748
  17. Ha, B. H. and Kim, E. E. (2008) Structures of proteases for ubiqutin and ubiquitin-like modifiers. BMB Rep. 41, 435-443
  18. Seol, J. H., Feldman, R. M., Zachariae, W., Shevchenko, A., Correll, C. C., Lyapina, S., Chi, Y., Galova, M., Claypool, J., Sandmeyer, S., Nasmyth, K. and Deshaies, R. J. (1999) Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13, 1614-1626
  19. Oh, K. J., Kalinina, A., Wang, J., Nakayama, K., Nakayama, K. I. and Bagchi, S. (2004) The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase. J. Virol. 78, 5338-5346
  20. Brzovic, P. S., Keeffe, J. R., Nishikawa, H., Miyamoto, K., Fox, D., 3rd, Fukuda, M., Ohta, T. and Klevit, R. (2003) Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl. Acad. Sci. U.S.A. 100, 5646-5651
  21. Petroski, M. D. and Deshaies, R. J. (2005) Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin- RING ubiquitin-ligase complex SCF-Cdc34. Cell 123, 1107-1120
  22. Rodrigo-Brenni, M. C. and Morgan, D. O. (2007) Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127-139
  23. Hochstrasser, M. (1996) Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405-439
  24. VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. and Wolberger, C. (2001) Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711-720
  25. Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W. and Gygi, S. P. (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700-710
  26. Tan, P., Fuchs, S. Y., Chen, A., Wu, K., Gomez, C., Ronai, Z. and Pan, Z. Q. (1999) Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol. Cell 3, 527-533

Cited by

  1. Molecular Dynamics Reveal the Essential Role of Linker Motions in the Function of Cullin–RING E3 Ligases vol.396, pp.5, 2010,
  2. Structure and interaction of ubiquitin-associated domain of human Fas-associated factor 1 vol.18, pp.11, 2009,
  3. Association of the Disordered C-terminus of CDC34 with a Catalytically Bound Ubiquitin vol.407, pp.3, 2011,
  4. Cell Adhesion Molecules and Ubiquitination—Functions and Significance vol.5, pp.1, 2015,
  5. E2 enzymes: more than just middle men vol.26, pp.4, 2016,
  6. Synergistic effect of two E2 ubiquitin conjugating enzymes in SCFhFBH1 catalyzed polyubiquitination vol.48, pp.1, 2015,
  7. 60th residues of ubiquitin and Nedd8 are located out of E2-binding surfaces, but are important for K48 ubiquitin-linkage vol.583, pp.20, 2009,
  8. Differential Ubiquitin Binding by the Acidic Loops of Ube2g1 and Ube2r1 Enzymes Distinguishes Their Lys-48-ubiquitylation Activities vol.290, pp.4, 2015,
  9. Cytoplasmic domain of NCAM140 interacts with ubiquitin-fold modifier-conjugating enzyme-1 (Ufc1) vol.324, pp.2, 2014,