• 제목/요약/키워드: P2P traffic classification

검색결과 15건 처리시간 0.025초

Real-time Classification of Internet Application Traffic using a Hierarchical Multi-class SVM

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.859-876
    • /
    • 2010
  • In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.

다양한 분류기법을 이용한 네트워크상의 P2P 데이터 분류실험 (Network Classification of P2P Traffic with Various Classification Methods)

  • 한석완;황진수
    • 응용통계연구
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2015
  • 인터넷 트래픽의 증가로 인하여 네트워크의 보안 문제가 중요한 문제로 대두되고 있다. 그 중에서도 특히 P2P 트래픽의 증가는 모든 서버의 관리자에게는 해결해야할 중요한 문제로 대두되고 있다. 서버에서 네트워크 트래픽을 조사하여 문제가 있는 트래픽을 미리 차단하는 것은 서비스 품질의 향상과 자원의 효율적인 사용 측면에서 바람직하나 오가는 패킷의 내부정보를 조사하는 것은 개인정보보호 차원에서 문제가 있을 수 있으며 시간과 노력이 많이 소요되므로 요즘은 통계적인 기계학습의 방법을 이용하여 이상 트래픽을 찾아내는 연구가 주를 이루고 있다. 본 연구에서는 최근의 기계학습방법 중에서 널리 쓰이는 방법들을 비교 연구하여 그 결과 랜덤포리스트(random forest)라고 불리는 방법의 우수함을 보였다.

다중 클래스 SVM을 이용한 계층적 인터넷 애플리케이션 트래픽의 분류 (Hierarchical Internet Application Traffic Classification using a Multi-class SVM)

  • 유재학;이한성;임영희;김명섭;박대희
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.7-14
    • /
    • 2010
  • 본 논문에서는 인터넷 애플리케이션 트래픽 분류방법으로 대표되는 포트 번호 및 페이로드 정보를 이용하는 방법론의 한계점을 극복하는 대안으로서, SVM을 기반으로 한 계층적 인터넷 애플리케이션 트래픽 분류 시스템을 제안한다. 제안된 시스템은 이진 분류기인 SVM과 단일클래스 SVM의 대표적 모델인 SVDD를 계층적으로 결합한 새로운 트래픽 분류 모델로서, 학내에서 수집된 양방향 트래픽 플로우 데이터에 대한 최적의 속성 부분집합을 선택한 후, P2P 트래픽과 non-P2P 트래픽을 빠르게 분류하는 첫 번째 계층, P2P 트래픽들을 파일공유, 메신저, TV로 분류하는 두 번째 계층, 그리고 전체 16가지 애플리케이션 트래픽별로 세분화 분류하는 세 번째 계층으로 구성된다. 제안된 시스템은 인터넷 애플리케이션 트래픽을 coarse 혹은 fine하게 분류함으로써 효율적인 시스템의 자원 관리, 안정적인 네트워크 환경의 지원, 원활한 대역폭의 사용, 그리고 적절한 QoS를 보장할 수 있다. 또한, 새로운 애플리케이션 트래픽이 추가되더라도 전체 시스템을 재학습시킬 필요 없이 새로운 애플리케이션 트래픽만을 추가 학습함으로써 시스템의 점증적 갱신 및 확장성도 가능하다. 실험을 통하여 제안된 시스템의 성능을 검증한다.

동작형태 분석을 통한 Skype 응용 트래픽의 실시간 탐지 방법 (Real-time Identification of Skype Application Traffic using Behavior Analysis)

  • 이상우;이현신;최미정;김명섭
    • 한국통신학회논문지
    • /
    • 제36권2B호
    • /
    • pp.131-140
    • /
    • 2011
  • 최근 인터넷 사용자의 증가와 고속 네트워크 망을 통한 네트워크 트래픽의 급증으로 효율적인 네트워크 트래픽 관리의 필요성이 더욱 커졌다. 효율적인 트래픽 관리를 위해서는 응용 프로그램 별 트래픽 분류의 연구가 선행되어야 하며 이미 많은 기존 논문에서 응용레벨 트래픽 분류에 대한 다양한 알고리즘을 제시하고 있다. 하지만 P2P기반의 Skype응용에 대해서는 분석율이 떨어져 이에 대한 연구가 더 필요한 실정이다. 본 논문에서는 payload 시그니쳐 기반 분석, 기계학습 기반 분석 등 기존의 방법론에 의존하지 않고 Skype응용의 트래픽 특성을 분석해 사용자들의 {IP, port} 리스트를 추출하고 이를 이용해 네트워크 내에 발생하는 Skype응용 프로그램의 트래픽을 정확하게 탐지하는 실시간 탐지 알고리즘을 제안한다 제안된 방법론은 학내 네트워크에 적용하여 그 타당성을 검증하였다.

개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법 (P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms)

  • 예우지엔;조경산
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.45-54
    • /
    • 2014
  • 본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.

조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔 트래픽 분류 방법 (Traffic Classification based on Adjustable Convex-hull Support Vector Machines)

  • 위즈빈;최용도;길기범;김승호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.67-76
    • /
    • 2012
  • 트래픽 분류는 트래픽 관리하는데 중요한 역할을 차지하고 있다. 전통적인 방법은 P2P와 암호화 트래픽을 제대로 분류할 수 없는 문제가 있다. 서포트 벡터 머신은 기존의 문제를 해결할 수 있고 병목 현상을 극복할 수 있는 유용한 분류 도구이다. 하지만 서포트 벡터 머신의 주요 장점은 이차 프로그래밍(QP)문제 때문에 큰 데이터 집단을 훈련하는데 시간을 소모한다. 그러나 유용한 서포트 벡터는 전체 데이터에서 극히 일부분이다. 만약 우리가 훈련전에 쓸모없는 벡터들을 삭제할 수 있다면, 시간을 절약하고 정확도를 유지할 수 있다. 이 논문에서 우리는 대규모 데이터를 다룰 때 훈련 속도를 빠르게 하기위해 순차적인 방법을 통해 쓸모없는 벡터들을 제거하기 위한 가능성을 논의하였다.

GENESIS: Internet Disk P2P 트래픽 탐지를 위한 시그너춰 자동 생성 방안 (GENESIS: An Automatic Signature-generating Method for Detecting Internet Disk P2P Application Traffic)

  • 이병준;윤승현;이영석
    • 한국정보과학회논문지:정보통신
    • /
    • 제34권4호
    • /
    • pp.246-255
    • /
    • 2007
  • 다량의 네트워크 대역폭을 소모하는 P2P 응용 프로그램 트래픽을 차단하기 위해, 학내망 혹은 기업망의 방화벽에는 상례적으로 P2P 트래픽 차단 규칙들이 등록되고 있다. 하지만 포트 번호만을 사용하는 단순한 차단 규칙들은 'Port Hopping' 등의 기법으로 방화벽을 우회하거나, HTTP 기반 인터넷 디스크 서비스 등으로 위장된 P2P 응용의 트래픽은 차단해 내지 못한다. 이러한 트래픽을 올바르게 식별하고 차단하기 위해서는 페이로드 시그너춰(payload signature) 기반의 패킷 식별 방법을 사용하여야 하며, 현재 상당수의 IDS 시스템들이 이를 지원한다. 하지만 이 방법은 정확도가 높고 간단하게 적용될 수 있는 반면, 시그너춰를 찾는 작업 자체의 난이도가 높아서 시그너춰의 목록을 최신 상태로 유지하는 것이 어렵다. 그러므로 이 방법이 효율적으로 운용되기 위해서는 패킷의 페이로드(payload)로부터 시그너춰를 자동 추출하는 방안이 필요하다. 본 논문에서는 인터넷 디스크 형태로 서비스되는 P2P 응용 프로그램의 시그너춰를 자동 추출하는 방안을 소개하고, 해당 방안을 충남대학교 학내망에 적용한 사례를 보인다.

HTTP 트래픽의 클라이언트측 어플리케이션별 분류 (Classification of Client-side Application-level HTTP Traffic)

  • 최미정;진창규;김명섭
    • 한국통신학회논문지
    • /
    • 제36권11B호
    • /
    • pp.1277-1284
    • /
    • 2011
  • 오늘날 많은 어플리케이션들이 방화벽에서 차단을 막기 위해 HTTP 프로토콜의 기본 포트인 80번 포트를 사용하고 있다. HTTP 프로토콜이 예전처럼 웹 브라우징에만 사용되는 것이 아니라 P2P 어플리케이션의 검색, 소프트웨어 업데이트, 네이트온 메신저의 광고 전송 등 다양한 어플리케이션에 사용되며 다양한 형태의 서비스를 제공하고 있다. HTTP 트래픽의 증가와 다양한 어플리케이션들이 HTTP 프로토콜을 사용함으로써 어떤 서비스들이 어떻게 HTTP 이용하는지에 대한 파악이 중요해지고 있으며, 방화벽과 같은 장비에서 특정 어플리케이션의 트래픽을 차단하기 위해서는 HTTP 프로토콜 레벨이 아닌 어플리케이션 레벨의 분석이 필요하게 되었다. 따라서 본 논문에서는 HTTP 트래픽에 대해 HTTP 프로토콜을 사용하는 클라이언트측의 어플리케이션별로 분류하고 이를 서비스별로 그룹지어 HTTP 트래픽을 클라이언트측면에서 분류하는 방법을 제안하고자 한다. 제안한 방법론을 학내 네트워크에서 발생하는 트래픽에 적용함으로써 알고리즘의 타당성을 검증하였다.

계층적 다중 클래스 SVM을 이용한 인터넷 애플리케이션 트래픽 분류 (Internet Application Traffic Classification using a Hierarchical Multi-class SVM)

  • 유재학;김성윤;이한성;김명섭;박대희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (A)
    • /
    • pp.174-178
    • /
    • 2008
  • P2P를 포함하는 인터넷 애플리케이션 트래픽의 보다 빠르고 정확한 분류는 최근 학계의 중요한 이슈 중 하나이다. 본 논문에서는 기존의 전통적인 분류방법으로 대표되는 port 번호 및 payload 정보를 이용하는 방법론의 구조적 한계점을 극복하는 새로운 대안으로써, 이진 분류기인 SVM과 단일클래스 SVM을 계층적으로 결합한 다중 클래스 SVM을 구축하여 인터넷 애플리케이션 트래픽 분류를 수행하였다. 제안된 시스템은 이진 분류기인 SVM으로 P2P 트래픽과 non-P2P 트래픽을 빠르게 분류하는 첫 번째 계층, 3개의 단일클래스 SVM을 기반으로 P2P 트래픽들을 파일공유, 메신저, TV로 분류하는 두 번째 계층, 그리고 전체 16가지의 애플리케이션 트래픽별로 세분화 분류하는 세 번째 계층으로 구성된다. 제안된 시스템은 flow 기반의 트래픽 정보를 수집하여 인터넷 애플리케이션 트래픽을 coarse 혹은 fine하게 분류함으로써 효율적인 시스템의 자원 관리, 안정적인 네트워크 환경의 지원, 원활한 bandwidth의 사용, 그리고 적절한 QoS를 보장하였다. 또한, 새로운 애플리케이션 트래픽이 추가되더라도 전체 시스템을 재학습 시킬 필요 없이 새로운 애플리케이션 트래픽만을 추가 학습함으로써 시스템의 점증적 갱신 및 확장성에도 기여하였다. 평가항목인 recall과 precision에서 만족스러운 수치 등을 실험을 통하여 확인함으로써 제안된 시스템의 성능을 검증하였다.

  • PDF

Skype 트래픽 분류에 관한 연구 (Research on Skype Traffic Classification)

  • 이상우;정아주;이현신;김명섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1112-1115
    • /
    • 2009
  • 네트워크 관리자 입장에서 효율적인 네트워크 관리를 위해 응용 프로그램 별 트래픽 분류의 중요성이 커지고 있다. 응용 프로그램 별 트래픽 분류를 위해 signature 기반, machine learning 방법들이 제안되고 있지만 p2p 방식의 Skype 응용프로그램에 대한 적용결과는 그 신뢰성이 떨어지고 있는 것은 사실이다. 본 논문에서는 Skype의 트래픽을 분류하기 위해 각 Client 마다 Skype application install 시 동적으로 변화하는 Port 를 알아내는 방법, UDP 패킷의 특정위치의 특정 signature, TCP signal flow의 특정위치 패킷에 대한 payload 크기 등을 이용한 Skype traffic 분류 방법을 제안한다. 제안된 방법론은 학내 네트워크에 적용하여 그 타당성을 TMA를 통해 검증하였다.