KSII Transactions on Internet and Information Systems (TIIS)
/
제4권5호
/
pp.859-876
/
2010
In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.
인터넷 트래픽의 증가로 인하여 네트워크의 보안 문제가 중요한 문제로 대두되고 있다. 그 중에서도 특히 P2P 트래픽의 증가는 모든 서버의 관리자에게는 해결해야할 중요한 문제로 대두되고 있다. 서버에서 네트워크 트래픽을 조사하여 문제가 있는 트래픽을 미리 차단하는 것은 서비스 품질의 향상과 자원의 효율적인 사용 측면에서 바람직하나 오가는 패킷의 내부정보를 조사하는 것은 개인정보보호 차원에서 문제가 있을 수 있으며 시간과 노력이 많이 소요되므로 요즘은 통계적인 기계학습의 방법을 이용하여 이상 트래픽을 찾아내는 연구가 주를 이루고 있다. 본 연구에서는 최근의 기계학습방법 중에서 널리 쓰이는 방법들을 비교 연구하여 그 결과 랜덤포리스트(random forest)라고 불리는 방법의 우수함을 보였다.
본 논문에서는 인터넷 애플리케이션 트래픽 분류방법으로 대표되는 포트 번호 및 페이로드 정보를 이용하는 방법론의 한계점을 극복하는 대안으로서, SVM을 기반으로 한 계층적 인터넷 애플리케이션 트래픽 분류 시스템을 제안한다. 제안된 시스템은 이진 분류기인 SVM과 단일클래스 SVM의 대표적 모델인 SVDD를 계층적으로 결합한 새로운 트래픽 분류 모델로서, 학내에서 수집된 양방향 트래픽 플로우 데이터에 대한 최적의 속성 부분집합을 선택한 후, P2P 트래픽과 non-P2P 트래픽을 빠르게 분류하는 첫 번째 계층, P2P 트래픽들을 파일공유, 메신저, TV로 분류하는 두 번째 계층, 그리고 전체 16가지 애플리케이션 트래픽별로 세분화 분류하는 세 번째 계층으로 구성된다. 제안된 시스템은 인터넷 애플리케이션 트래픽을 coarse 혹은 fine하게 분류함으로써 효율적인 시스템의 자원 관리, 안정적인 네트워크 환경의 지원, 원활한 대역폭의 사용, 그리고 적절한 QoS를 보장할 수 있다. 또한, 새로운 애플리케이션 트래픽이 추가되더라도 전체 시스템을 재학습시킬 필요 없이 새로운 애플리케이션 트래픽만을 추가 학습함으로써 시스템의 점증적 갱신 및 확장성도 가능하다. 실험을 통하여 제안된 시스템의 성능을 검증한다.
최근 인터넷 사용자의 증가와 고속 네트워크 망을 통한 네트워크 트래픽의 급증으로 효율적인 네트워크 트래픽 관리의 필요성이 더욱 커졌다. 효율적인 트래픽 관리를 위해서는 응용 프로그램 별 트래픽 분류의 연구가 선행되어야 하며 이미 많은 기존 논문에서 응용레벨 트래픽 분류에 대한 다양한 알고리즘을 제시하고 있다. 하지만 P2P기반의 Skype응용에 대해서는 분석율이 떨어져 이에 대한 연구가 더 필요한 실정이다. 본 논문에서는 payload 시그니쳐 기반 분석, 기계학습 기반 분석 등 기존의 방법론에 의존하지 않고 Skype응용의 트래픽 특성을 분석해 사용자들의 {IP, port} 리스트를 추출하고 이를 이용해 네트워크 내에 발생하는 Skype응용 프로그램의 트래픽을 정확하게 탐지하는 실시간 탐지 알고리즘을 제안한다 제안된 방법론은 학내 네트워크에 적용하여 그 타당성을 검증하였다.
본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.
트래픽 분류는 트래픽 관리하는데 중요한 역할을 차지하고 있다. 전통적인 방법은 P2P와 암호화 트래픽을 제대로 분류할 수 없는 문제가 있다. 서포트 벡터 머신은 기존의 문제를 해결할 수 있고 병목 현상을 극복할 수 있는 유용한 분류 도구이다. 하지만 서포트 벡터 머신의 주요 장점은 이차 프로그래밍(QP)문제 때문에 큰 데이터 집단을 훈련하는데 시간을 소모한다. 그러나 유용한 서포트 벡터는 전체 데이터에서 극히 일부분이다. 만약 우리가 훈련전에 쓸모없는 벡터들을 삭제할 수 있다면, 시간을 절약하고 정확도를 유지할 수 있다. 이 논문에서 우리는 대규모 데이터를 다룰 때 훈련 속도를 빠르게 하기위해 순차적인 방법을 통해 쓸모없는 벡터들을 제거하기 위한 가능성을 논의하였다.
다량의 네트워크 대역폭을 소모하는 P2P 응용 프로그램 트래픽을 차단하기 위해, 학내망 혹은 기업망의 방화벽에는 상례적으로 P2P 트래픽 차단 규칙들이 등록되고 있다. 하지만 포트 번호만을 사용하는 단순한 차단 규칙들은 'Port Hopping' 등의 기법으로 방화벽을 우회하거나, HTTP 기반 인터넷 디스크 서비스 등으로 위장된 P2P 응용의 트래픽은 차단해 내지 못한다. 이러한 트래픽을 올바르게 식별하고 차단하기 위해서는 페이로드 시그너춰(payload signature) 기반의 패킷 식별 방법을 사용하여야 하며, 현재 상당수의 IDS 시스템들이 이를 지원한다. 하지만 이 방법은 정확도가 높고 간단하게 적용될 수 있는 반면, 시그너춰를 찾는 작업 자체의 난이도가 높아서 시그너춰의 목록을 최신 상태로 유지하는 것이 어렵다. 그러므로 이 방법이 효율적으로 운용되기 위해서는 패킷의 페이로드(payload)로부터 시그너춰를 자동 추출하는 방안이 필요하다. 본 논문에서는 인터넷 디스크 형태로 서비스되는 P2P 응용 프로그램의 시그너춰를 자동 추출하는 방안을 소개하고, 해당 방안을 충남대학교 학내망에 적용한 사례를 보인다.
오늘날 많은 어플리케이션들이 방화벽에서 차단을 막기 위해 HTTP 프로토콜의 기본 포트인 80번 포트를 사용하고 있다. HTTP 프로토콜이 예전처럼 웹 브라우징에만 사용되는 것이 아니라 P2P 어플리케이션의 검색, 소프트웨어 업데이트, 네이트온 메신저의 광고 전송 등 다양한 어플리케이션에 사용되며 다양한 형태의 서비스를 제공하고 있다. HTTP 트래픽의 증가와 다양한 어플리케이션들이 HTTP 프로토콜을 사용함으로써 어떤 서비스들이 어떻게 HTTP 이용하는지에 대한 파악이 중요해지고 있으며, 방화벽과 같은 장비에서 특정 어플리케이션의 트래픽을 차단하기 위해서는 HTTP 프로토콜 레벨이 아닌 어플리케이션 레벨의 분석이 필요하게 되었다. 따라서 본 논문에서는 HTTP 트래픽에 대해 HTTP 프로토콜을 사용하는 클라이언트측의 어플리케이션별로 분류하고 이를 서비스별로 그룹지어 HTTP 트래픽을 클라이언트측면에서 분류하는 방법을 제안하고자 한다. 제안한 방법론을 학내 네트워크에서 발생하는 트래픽에 적용함으로써 알고리즘의 타당성을 검증하였다.
P2P를 포함하는 인터넷 애플리케이션 트래픽의 보다 빠르고 정확한 분류는 최근 학계의 중요한 이슈 중 하나이다. 본 논문에서는 기존의 전통적인 분류방법으로 대표되는 port 번호 및 payload 정보를 이용하는 방법론의 구조적 한계점을 극복하는 새로운 대안으로써, 이진 분류기인 SVM과 단일클래스 SVM을 계층적으로 결합한 다중 클래스 SVM을 구축하여 인터넷 애플리케이션 트래픽 분류를 수행하였다. 제안된 시스템은 이진 분류기인 SVM으로 P2P 트래픽과 non-P2P 트래픽을 빠르게 분류하는 첫 번째 계층, 3개의 단일클래스 SVM을 기반으로 P2P 트래픽들을 파일공유, 메신저, TV로 분류하는 두 번째 계층, 그리고 전체 16가지의 애플리케이션 트래픽별로 세분화 분류하는 세 번째 계층으로 구성된다. 제안된 시스템은 flow 기반의 트래픽 정보를 수집하여 인터넷 애플리케이션 트래픽을 coarse 혹은 fine하게 분류함으로써 효율적인 시스템의 자원 관리, 안정적인 네트워크 환경의 지원, 원활한 bandwidth의 사용, 그리고 적절한 QoS를 보장하였다. 또한, 새로운 애플리케이션 트래픽이 추가되더라도 전체 시스템을 재학습 시킬 필요 없이 새로운 애플리케이션 트래픽만을 추가 학습함으로써 시스템의 점증적 갱신 및 확장성에도 기여하였다. 평가항목인 recall과 precision에서 만족스러운 수치 등을 실험을 통하여 확인함으로써 제안된 시스템의 성능을 검증하였다.
네트워크 관리자 입장에서 효율적인 네트워크 관리를 위해 응용 프로그램 별 트래픽 분류의 중요성이 커지고 있다. 응용 프로그램 별 트래픽 분류를 위해 signature 기반, machine learning 방법들이 제안되고 있지만 p2p 방식의 Skype 응용프로그램에 대한 적용결과는 그 신뢰성이 떨어지고 있는 것은 사실이다. 본 논문에서는 Skype의 트래픽을 분류하기 위해 각 Client 마다 Skype application install 시 동적으로 변화하는 Port 를 알아내는 방법, UDP 패킷의 특정위치의 특정 signature, TCP signal flow의 특정위치 패킷에 대한 payload 크기 등을 이용한 Skype traffic 분류 방법을 제안한다. 제안된 방법론은 학내 네트워크에 적용하여 그 타당성을 TMA를 통해 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.