• Title/Summary/Keyword: P. putida

Search Result 191, Processing Time 0.02 seconds

DNA Rearrangement of TOL Plasmid in Pseudomonas putida PpGl Harbouring CAM Plasmid (CAM 플라스미드를 함유하는 Pseudomonas putida PpG1에서 TOL 플라스미드이 DNA 재배열)

  • 전효곤;조경연;고영희
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.433-436
    • /
    • 1990
  • The TOL plasmid, pWWO, conjugally transferred from Pseudomonas putida mt-2 was dissociated into TOL* and TOL $\Delta$A in P. putidu PpGl carrying CAM plasmid. The TOL* was integrated into the CAM plasmid, and the resulting plasmid was designated as CAM::TOL*. The introduction of NAH plasmid, belonging to Inc P9 incompatibility group, into P. putida CSTBA carrying CAM::TOLt plasmid and TOL A plasmid did not affect m-toluate catabolism, but resulted in expelling the TOL $\Delta$ plasmid.

  • PDF

A Study of Pseudomonas putida Fed-batch Culture (Pseudomonas putida의 유가배양연구)

  • 김인호;김희정;송재양
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.307-310
    • /
    • 2002
  • In order to obtain high density seed cells for biofiltration, we studied batch and fed-batch culture of P. putida. Studies were carried out to find optimum fermentation conditions such as pH, concentration of glucose and agitation speed. Specific growth rate of P. putida was dependent on agitation speed and a high rpm of 300 was necessary to carry out the efficient aerobic growth of P. putida. Specific growth rate was highest at pH 7. Feeding glucose and yeast extract continuously at the initial growth phase was the most effective way to get high cell density of P. putida.

Conjugal Transfer of NAH, TOL, and CAM::TOL* Plasmid into n-Alkane Assimilating Pseudomonas putida (방향족 탄화수소 분해 Plasmid의 n-Alkane 자화성 Pseudomonas putida에로의 전이)

  • Kho, Yung-Hee;Chun, Hyo-Kon;Cho, Kyong-Yun;Bae, Kyung-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.51-55
    • /
    • 1989
  • The conjugally transferred TOL plasmid or NAH plasmid was stably maintained and expressed in n-alkane assimilating Pseudomonas putida KCTC 2405. However, these plasmids were not able to coexist in this strain because of incompatibility. The incompatibility of TOL and NAH plasmid was bypassed using CAM::TOL* plasmid, which was constructed by the transposition of only tol gene without incompatibility system in TOL plasmid into CAM plasmid. p. putida 3SK capable of growing on m-toluate, naphthalene, camphor, and n-alkane(C8-C24) was constructed by the conjugal transfer of NAH plasmid into n-alkane assimilating p. putida SK carrying CAM:: TOL* plasmid. CAM::TOL* plasmid in p. putida 3SK was stable on the selective media but unstable on the nonselective media.

  • PDF

Development of Versatile Strains of Pseudomonas Degrading Various Persistent Aromatic Hydrocarbons (다양한 난분해성 방향족 탄화수소를 분해하는 Pseudomonas의 균주개발)

  • 이지현;최인성;박경량;박용근;이영록
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.236-242
    • /
    • 1990
  • To develop the new strains of microorganisms having the degradative ability for various aromatic hydrocarbons, the hybrid plasmid pKG2 having the 2,4-Dichlorophenoxyacetic acid(2,4-D) degradative genes, the hybrid plasmid pKG3 containg the naphthalene degradative genes and TOL plasmid were introduced into Pseudomonas putida KUD 12 and P. putida KUP 10 by transformation or conjugation which originally have the degradative ability of the synthetic surfactants and phthalate esters, respectively. From P. putida KUD12, the new strains of P. putida KUD101(pKG2), KUD102(pKG3), KUD103(TOL), and KUD202(pKG3, TOL) were obtained, and KUD106(pKG2), KUD107(pKG3), KUD108(TOL) were originated from the P.putida KUP10. The degradative abilities in P. putida KUD101, KUD102 and KUD107 were similar with those of the original strains. The P. putida KUD103, KUD106 and KUD202 had a little lower and P. putida KUD108 had a better degradative abilitie than those of the original ones. In the case of mixed cultures, the mixed culture of KUD107 and KUD108 had a better degradative abilities than those of the other mixed cultures.

  • PDF

PCBs에 오염된 연안해양 Microcosm에서의 PCBs분해 유전자조작 Pseudomonas putida AC30(pMFB2)의 동태해석

  • 민만기;천단선일랑;고전간길;고천겸개
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.193-198
    • /
    • 2000
  • PCBs를 분해하는 bphABC유전자를 plasmid vactor pMFB2에 유전자조작한 Pseudomonas putida AC30(pMFB2)를 PCBs에 오염된 연안해역의 해수와 저니로 만든 microcosm에 도입한 결과, 각각 도입 4일과 7일만에 사멸하였다. 그러나, 도입한 P. putida AC30(pMFB2)는 사멸하였지만, 연안해수와 저니 microcosm에서 plasmid pMFB2가 전이한 토착미생물이 검출되었다. 도입한 P. putida AC30(pMFB2)의 생잔실패의 원인을 분석한 결과 공경 0.2$\mu\textrm{m}$의 filter를 통과하는 물질과 생물이 가장 크게 영향을 미치는 것으로 나타났다. 유전자조작 P. putida AC30(pMFB2)의 도입과 bphABC유전자의 토착미생물로의 전이에 따른 토착미생물군집에 미치는 영향을 개체수 변동으로 조사한 결과, 토착미생물 군집에 미치는 영향은 보이지 않았다. P. putida AC30(pMFB2)의 도입에 의한 PCBs의 생분해성을 분석하였다. 그러나, 도입한 유전자조작 균주가 생잔에 실패함으로써 잔류하고 있는 PCBs의 농도변화는 보이지 않았다.

  • PDF

In Situ Monitoring of Biofilm Formations of Escherichia coli and Pseudomonas putida by Use of Lux and GFP Reporters

  • Khang, Youn-Ho;Rober S. Burlage
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.6-10
    • /
    • 1998
  • A plasmid vector containing two reporter genes, mer-lux and lac-GFP, was transformed to both Escherichia coli and Pseudomonas putida. Their cellular activities and biofilm characteristics were investigated in flow-cell units by measuring bioluminescent lights and fluorescent levels of GFP. Bioluminescence was effective to monitor temporal cell activities, whereas fluorescent level of GFP was useful to indicate the overall cell activities during biofilm development. The light production rates of E. coli and P. putida cultures were dependent upon concentrations of HgCl2. Mercury molecules entrapped in P. putida biofilms were hardly washed out in comparison with those in E. coli biofilms, indicating that P. putida biofilms may have higher affinity to mercury molecules than E. coli biofilms. It was observed that P. putida expressed GFP cDNA in biofilms but not in liquid cultures. This may indicate that the genetic mechanisms of P. putida were favorably altered in biofilm conditions to make a foreign gene expression possible.

  • PDF

Enhancement of cis,cis-Muconate Productivity by Overexpression of Catechol 1,2-Dioxygenase in Pseudomonas putida BCM114

  • Kim, Beum-Jun;Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.112-114
    • /
    • 1998
  • For enhancement of cis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion to cis,cis-muconate) was cloned and expressed in recombinant Pseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM), cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the cae of wild-type P. putida BM014, whereas cis,cis-muconate productivity continuously increased and catechol was completely transformed to cis,cis-muconate for P. putida BCM114. Specific C12O activity of P. putida BCM114 was about three times higher than that of P. putida BM014, and productivity was enhanced more than two times.

  • PDF

Isolation and Characterization of Caffeine Degrading Bacteria (카페인 분해균주의 분리 및 특성)

  • Ryu, Beung-Ho;Ju, Sin-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.215-220
    • /
    • 1992
  • Several bacterial strains capable of degrading caffeine were isolated and studied for their biodegradation ability of the caffeine and some biochemical characteristics. The isolate KS-5 was identified as Pseudomonas putida and was designated as the P. putida KS-5. The optimum conditions were at $30^{\circ}C$, pH 7.0 and 1.0% caffeine. Agarose gel electrophoresis and curing experiment were found that the gene for caffeine degradation was encoded on the plasmid in P. putida KS-5 and that this strain was resistant to several antibiotics.

  • PDF

Cloning, Sequencing and Comparison of Genes for early Enzymes of the Protocatechuate (ortho-Cleavage) Pathway in Pseudomonas putida (Pseudomonas putida의 Protocatechuate 경로에 관여하는 초기 효소들의 유전자의 클로닝 및 염기서열 분석비교)

  • Hong, Bum-Shik;Shin, Dong-Hoon;Kim, Jae-Ho
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.472-476
    • /
    • 1996
  • The major portions of two DNA fragments, one from degradative plasmid, pRA4000 from Pseudomonas putida NCIMB 9866, and the other from degradative plasmid, pRA500 from P. putida NCIMB 9869, which harbor the structural genes for the flavoprotein (pchF) and cytochrome (pchC) subunits of p-cresol methylhydroxylase (PCMH), have been sequenced. The DNA and deduced amino acid sequences for pchC and pchF have been published. In these fragments, a coding region (dhal) for an aldehyde dehydrogenase has been identified. It is proposed that this gene encodes for the aldehyde dehydrogenase which converts p-hydroxybenzyaldehyde to p-hydroxybenzoate. p-Hydroxybezealdehyde is the product of oxidation of p-cresol by PCMH. The fragment from P. putida 9869 also harbors the genes for the ${\alpha}$ (pcaG) and ${\beta}$ (pcaH) subunits of protocatechuate 3,4-dioxigenase. The fragment from 9866 does not have any portion of these genes in the corresponding region A possible open reading frame (ORF) between pchC and pchF is seen for both clones, and a second putative open reading frame (ORF') also exists in the 9866 clone. The gene organizations are dhal-pchC-ORF-pchF-pcaGH for the DNA fragment from 9869, and ORF-dhal-pchC-ORF-pchF for the DNA fragment from 9866.

  • PDF

Cloning and Expression of Pseudomonas cepacia catB Gene in Pseudomonas putida

  • Song, Seung-Yeon;Jung, Young-Hee;Lee, Myeong-Sok;Lee, Ki-Sung;Kim, Young-Soo;Kim, Chi-Kyung;Choi, Sang-Ho;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.334-340
    • /
    • 1996
  • The enzyme, cis,cis-muconate lactonizing enzyme has been proposed to play a key role in the $\beta$-ketoadipate pathway of benzoate degradation. A 3.2-kb EcoRI fragment termed as pRSU2, isolated from a Pseudomonas cepacia genomic library was able to complement the catB defective mutant. Several relevant restriction enzyme sites were determined within the cloned fragment. In Pseudomonas putida SUC2 carrying pRSU2, the enzyme activity was relatively higher than those of the induced or partially induced state of wild type P. putida PRS2000. It was probably due to higher expression of P. cepacia catB in P. putida PRS2000. It was probably due to higher expression of P. cepacia catB in P. putida. One possible interpretation of these results is that the catB promoter in P. cepacia is recognized within P. putida, resulting in the almost same expression level.

  • PDF