• Title/Summary/Keyword: P-wave

Search Result 1,591, Processing Time 0.024 seconds

Quantification of Nerve Viscosity Using Shear Wave Dispersion Imaging in Diabetic Rats: A Novel Technique for Evaluating Diabetic Neuropathy

  • Feifei Liu;Diancheng Li;Yuwei Xin;Fang Liu;Wenxue Li;Jiaan Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.237-245
    • /
    • 2022
  • Objective: Viscoelasticity is an essential feature of nerves, although little is known about their viscous properties. The discovery of shear wave dispersion (SWD) imaging has presented a new approach for the non-invasive evaluation of tissue viscosity. The present study investigated the feasibility of using SWD imaging to evaluate diabetic neuropathy using the sciatic nerve in a diabetic rat model. Materials and Methods: This study included 11 diabetic rats in the diabetic group and 12 healthy rats in the control group. Bilateral sciatic nerves were evaluated 3 months after treatment with streptozotocin. We measured the nerve cross-sectional area (CSA), nerve stiffness using shear wave elastography (SWE), and nerve viscosity using SWD imaging. The motor nerve conduction velocity (MNCV) was also measured. These four indicators and the histology of the sciatic nerves were then compared between the two groups. The performance of CSA, SWE, and SWD imaging in distinguishing the two groups was assessed using receiver operating characteristic (ROC) analysis. Results: Nerve CSA, stiffness, and viscosity in the diabetic group was significantly higher than those in the control group (all p < 0.05). The results also revealed a significantly lower MNCV in the diabetic group (p = 0.005). Additionally, the density of myelinated fibers was significantly lower in the diabetic group (p = 0.004). The average thickness of the myelin sheath was also lower in the diabetic group (p = 0.012). The area under the ROC curve for distinguishing the diabetic neuropathy group from the control group was 0.876 for SWD imaging, which was significantly greater than 0.677 for CSA (p = 0.030) and 0.705 for SWE (p = 0.035). Conclusion: Sciatic nerve viscosity measured using SWD imaging was significantly higher in diabetic rats. The viscosity measured using SWD imaging performed well in distinguishing the diabetic neuropathy group from the control group. Therefore, SWD imaging may be a promising method for the evaluation of diabetic neuropathy.

Effect of Left Ventricular Diastolic Function on Exercise Capacity in Hypertensive Patients with Obesity (비만을 동반한 고혈압 환자의 좌심실 이완기 기능이 운동능력에 미치는 영향)

  • Shin, Kyung-A
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.269-278
    • /
    • 2020
  • The purpose of this study was to investigate the effect of left ventricular diastolic function on exercise capacity in hypertensive patients with obesity compared to the obese group. Adults who visited a general hospital in Gyeonggi-do from 2016 to 2019(man: 308, women: 192) were divided into 4 groups according to hypertension and obesity. In the hypertensive obesity group(IV), the A wave and E/E' wave were significantly higher than the normotensive obesity group(II), and the E' wave was significantly lower(respectively p<0.001). The group IV had significantly lower METS(metabolic equivalents) and exercise duration than the group II(respectively p<0.001). In group IV, E/A ratio was positively correlated with METS(p=0.025) and exercise duration(p=0.026). In contrast, E/E' wave in these groups showed a negative correlation with the exercise duration(p=0.046).

Autopicking algorithm of P wave by real-time (실시간 지진 P파 검출 알고리즘)

  • Ryoo, Yong-Gyu;Kim, Myung-Su
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.62-67
    • /
    • 2005
  • A new picking algorithm has been developed on real-time basis for finding the onset of P wave as well as discriminating the micro seismic signal from artificial noise. Unlike the previous methods which have used the STA/LTA ratio for discriminating the P arrivals, we have adopted the slope discrimination methods for identifying the P onset. As result, this algorithm has been turned out to be efficient in both accuracy and computation in on-line system.

  • PDF

The existence of solutions of a nonlinear wave equation

  • Choi, Q-Heung;Jung, Tack-Sun
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.153-167
    • /
    • 1996
  • In this paper we investigate the existence of solutions of a nonlinear wave equation $u_{tt} - u_{xx} = p(x, t, u)$$ in $H_0$, where $H_0$ is the Hilbert space spanned by eigenfunctions. If p satisfy condition $(p_1) - (p_3)$, this nonlinear gave equation has at least one solution.

  • PDF

Development of a Probabilistic Model for the Estimation of Yearly Workable Wave Condition Period for Offshore Operations - Centering on the Sea off the Ulsan Harbor (해상작업 가능기간 산정을 위한 확률모형 개발 - 울산항 전면 해역을 중심으로)

  • Choi, Se Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.115-128
    • /
    • 2019
  • In this study, a probabilistic model for the estimation of yearly workable wave condition period for offshore operations is developed. In doing so, we first hindcast the significant wave heights and peak periods off the Ulsan every hour from 2003.1.1 to 2017.12.31 based on the meteorological data by JMA (Japan Meterological Agency) and NOAA (National Oceanic and Atmospheric Administration), and SWAN. Then, we proceed to derive the long term significant wave height distribution from the simulated time series using a least square method. It was shown that the agreements are more remarkable in the distribution in line with the Modified Glukhovskiy Distribution than in the three parameters Weibull distribution which has been preferred in the literature. In an effort to develop a more comprehensive probabilistic model for the estimation of yearly workable wave condition period for offshore operations, wave height distribution over the 15 years with individual waves occurring within the unit simulation period (1 hour) being fully taken into account is also derived based on the Borgman Convolution Integral. It is shown that the coefficients of the Modified Glukhovskiy distribution are $A_p=15.92$, $H_p=4.374m$, ${\kappa}_p=1.824$, and the yearly workable wave condition period for offshore work is estimated to be 319 days when a threshold wave height for offshore work is $H_S=1.5m$. In search of a way to validate the probabilistic model derived in this study, we also carry out the wave by wave analysis of the entire time series of numerically simulated significant wave heights over the 15 years to collect every duration periods of waves the height of which are surpassing the threshold height which has been reported to be $H_S=1.5m$ in the field practice in South Korea. It turns out that the average duration period is 45.5 days from 2003 to 2017, which is very close to 46 days from the probabilistic model derived in this study.

Physical Layer Issues in Vehicular Communications (차량통신에서의 물리계층 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1229-1234
    • /
    • 2012
  • Vehicular communications have been receiving much attention in intelligent transport systems (ITS) by combining communication technology with automobile industries. In general, vehicular communications can be used for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments (WAVE). WAVE system transmits signal in 5.9GHz frequency band with orthogonal frequency division multiplexing (OFDM) signaling. In this paper, we consider physical layer issues in vehicular communications. We first overview the physical (PHY) layer of WAVE standard and properties of 5.9GHz signals, and then physical layer issues to provide reliable communication link are discussed.

Comparison of shear-wave sections from inverting refracted shear waves and surface wave dispersions (횡파단면 작성을 위한 굴절된 횡파와 표면파 자료 역산 결과 비교)

  • Lee, Chang, Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.287-291
    • /
    • 2005
  • Two-dimensional velocity tomograms of P- and S-waves were obtained by inverting traveltimes of first arrivals. The two sections of shear-wave velocity show similar features as a whole, with smaller values on the section from surface wave dispersions. Difficulties in picking SH-wave phases due to noise and later arrivals than P waves and PS converted waves are experienced. In addition, a flat layer model based on the surface wave inversion prohibits applications of the method where sgear wave velocities vary strongly in the lateral direction.

  • PDF

A Study on the Characteristic of Sea Wave (불규칙파(不規則波)의 특성(特性)에 관한(關) 연구(硏究))

  • Choi, Han-Kuy;Yun, Kang-Hun
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.59-64
    • /
    • 1985
  • The remarkable economic growth achived during 1960-1980 in Korea inevitablely demanded the expansion and maintenance of the harbors and their auxiliary seashore facilities. One of the most important elements in the basic besign for the expasion of a harbor and its auxiliary facilities is, of course, the proper determination of the design wave which reflects the major characteristics of the seashore under consideration. In this study, the parameters of significant waves for the industrial harbors on East Coast, Muck-Ho and Po-Hang, are first computed by means of computer programming using S.M.B and P.N.J methods, respectively. Then the design waves with the return periods of 5-200 years were estimated by frequency analysis of the significant waves. A comparison of the design waves with the observed wave data during the past 10 years made it possible to determine the optimum value of design wave at the two harbors. The important results of this study can be summarized as follows; 1) It seems appropriate to take the design wave hieghts with the return period of 50 years at Muck-Ho and Po-Hang as 6.9 and 5.8 meters respectively. 2) It was found that for the determination of design waves on East Coast of Korean Peninsula P.N.J method works better than S.M.B method in predicting the significant wave, and the Log-Normal distribution fits best to the wave data which were put to frequency analysis.

  • PDF

The new approach to calculate pulse wave returning energy vs. mechanical energy of rock specimen in triaxial test

  • Heidari, Mojtaba;Ajalloeian, Rassoul;Fard, Akbar Ghazi;Isfahanian, Mahmoud Hashemi
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • In this paper, we discuss a mathematical method for determining the return energy of the wave from the sample and comparing it with the mechanical energy consumed to change the dimension of the sample in the triaxial test of the rock. We represent a method to determine the mechanical energy and then we provide how to calculate the return energy of the wave. However, the static energy and pulse return energy will show higher amounts with axial pressure increase. Three types of clastic sedimentary rocks including sandstone, pyroclastic rock, and argillitic tuff were selected. The sandstone showed the highest strength, Young's modulus and ultrasonic P and S waves' velocities versus others in the triaxial test. Also, from the received P wavelet, the calculated pulse wave returning energy indicated the best correlation between axial stress compared to wave velocities in all specimens. The fact that the return energy decreases or increases is related to increasing lateral stress and depends on the geological characteristics of the rock. This method can be used to determine the stresses on the rock as well as its in-situ modulus in projects that are located at high depths of the earth.