DOI QR코드

DOI QR Code

해상작업 가능기간 산정을 위한 확률모형 개발 - 울산항 전면 해역을 중심으로

Development of a Probabilistic Model for the Estimation of Yearly Workable Wave Condition Period for Offshore Operations - Centering on the Sea off the Ulsan Harbor

  • 최세호 (서울시립대학교 토목공학과) ;
  • 조용준 (서울시립대학교 토목공학과)
  • Choi, Se Ho (Department of Civil Engineering, University of Seoul) ;
  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul)
  • 투고 : 2019.03.06
  • 심사 : 2019.06.03
  • 발행 : 2019.06.30

초록

본 논문에서는 공정별 해상작업 가능 기간의 합리적 산출이 가능한 확률모형이 제시된다. 확률모형을 유도하기 위해, 먼저 JMA(Japan Meterological Agency)와 NOAA(National Oceanic and Atmospheric Administration)의 해상풍 자료와 SWAN에 기초하여 2003년 1월 1일부터 2017년 12월 31일까지 한 시간 간격으로 울산 전면 해역에서의 유의 파고와 첨두 주기를 역추산 하였다. 이어 모의된 유의파고 시계열 자료로부터 최소 자승법을 활용하여 장기 유의파고 확률분포를 도출하였으며, 해석결과 그 동안 선호되던 삼 변량 Weibull 분포보다는 수정 Glukhovskiy 분포 계열에서 일치도가 가장 우월하였다. 보다 정확한 확률모형의 개발 가능성을 검토하기 위해 Borgman 선회적분을 활용하여 역 추산 단위 간격인 한 시간 내에서 출현하는 개별 파랑이 고려된 파고분포도 함께 유도하였다. 수정 Glukhovskiy 분포의 모수는 $A_p=15.92$, $H_p=4.374m$, ${\kappa}_p=1.824$로 드러났으며 해상작업 한계 파고가 $H_S=1.5m$인 경우 작업가능일 수는 319일로 모의되었다. 이와 더불어 확률모형의 검증자료를 얻기 위해 파고가 해상 준설작업 한계 파고로 기 보고된 바 있는 $H_S=1.5m$(Lee, 1991)를 상회하여 지속되는 시간을 유의파고 시계열 자료를 파별분석(wave by wave analysis)하여 산출하였다. 산출결과 2003년부터 2017년까지의 평균 지속기간은 45.5일로 확률모형으로부터 산출된 기간에 상당히 근접하였다.

In this study, a probabilistic model for the estimation of yearly workable wave condition period for offshore operations is developed. In doing so, we first hindcast the significant wave heights and peak periods off the Ulsan every hour from 2003.1.1 to 2017.12.31 based on the meteorological data by JMA (Japan Meterological Agency) and NOAA (National Oceanic and Atmospheric Administration), and SWAN. Then, we proceed to derive the long term significant wave height distribution from the simulated time series using a least square method. It was shown that the agreements are more remarkable in the distribution in line with the Modified Glukhovskiy Distribution than in the three parameters Weibull distribution which has been preferred in the literature. In an effort to develop a more comprehensive probabilistic model for the estimation of yearly workable wave condition period for offshore operations, wave height distribution over the 15 years with individual waves occurring within the unit simulation period (1 hour) being fully taken into account is also derived based on the Borgman Convolution Integral. It is shown that the coefficients of the Modified Glukhovskiy distribution are $A_p=15.92$, $H_p=4.374m$, ${\kappa}_p=1.824$, and the yearly workable wave condition period for offshore work is estimated to be 319 days when a threshold wave height for offshore work is $H_S=1.5m$. In search of a way to validate the probabilistic model derived in this study, we also carry out the wave by wave analysis of the entire time series of numerically simulated significant wave heights over the 15 years to collect every duration periods of waves the height of which are surpassing the threshold height which has been reported to be $H_S=1.5m$ in the field practice in South Korea. It turns out that the average duration period is 45.5 days from 2003 to 2017, which is very close to 46 days from the probabilistic model derived in this study.

키워드

참고문헌

  1. Ahn, K.M., Chun, H.S., Jeong, W.M., Park, D.D., Kang, T.S. and Hong, S.J. 2013. Analysis of the wave spectral shape parameters for the definition of swell waves. Journal of Korean Society of Coastal and Ocean Engineers, 25(6), 394-404. https://doi.org/10.9765/KSCOE.2013.25.6.394
  2. Battjes, J.A. 1972. Long term wave height distribution at seven stations around the British Isles. Deutschen Hyd. Zeitschrift, 25, 179-189. https://doi.org/10.1007/BF02312702
  3. Battjes, J.A. 1986. Energy dissipation in breaking solitary and periodic waves. Delft Univ. of Technology, Communic. on Hydr. and Geotechn. Engng, Rep. No. 12 and 86-5.
  4. Battjes, J.A. and Groenendijk, H.W. 2000. Wave height distributions on shallow foreshores. Coastal Engineering, 40, 161-182. https://doi.org/10.1016/S0378-3839(00)00007-7
  5. Borgman, L.E. 1973. Probabilities for highest wave in hurricane. J. Waterways, Harbors and Coastal Engineering, ASCE 99 (WW2), 185-207. https://doi.org/10.1061/AWHCAR.0000184
  6. Cavanie, A., Arhan, M. and Ezraty, R. 1976. A Statistical Relationship between Individual Heights and Periods of Storm Waves. Proc. Conf. on Behaviour of Offshore Structures, 2, 354-360.
  7. CIRIA and CUR, 1995. The Rock Manual. The use of rock in hydraulic engineering. C683, CIRIA, London.
  8. Forristall, G.Z. 2008. How should we combine long and short term wave height distributions? Proceedings of OMAE08 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal.
  9. Glukhovskiy, B.Kh. 1966. Investigation of sea wind waves (in Russian). Leningrad. Proc. of Sea Climatology Conference, 51-71.
  10. Goda, Y. 1979. A review on statistical interpretation of wave data, In: Report of the Port and Harbour Research Institute, Japan, 18, 5-32.
  11. Goda, Y. 1985. Random seas and design of maritime structures, University of Tokyo Press.
  12. Jeong, W.M., Oh, S.H., Ryu, K.H., Back, J.D. and Choi, I.H. 2018. Establishment of wave information network of Korea (WINK). J. Korean Soc. Coast. Ocean Eng., 30(6), 26-336.
  13. Klopman, G. 1996. Extreme wave heights in shallow water, H2486, Delft Hydraulics, The Netherlands.
  14. Klopman, G. and Stive, M.J.F. 1989. Extreme waves and wave loading in shallow water, paper presented at the E&P Forum Workshop in Paris, Delft Hydraulics, The Netherlands.
  15. Korean Ministry of Oceans and Fisheries, 2014. Ocean climate variability, global warming, climate modeling, climate processes, Adaptation, Press release, Date:2014.10.31.
  16. Lee, M.H. 1991. A fundamental study on the determination of critical limits and workable days for the construction of breakwaters, Master thesis, National Fisheries University of Pusan.
  17. Longuet-Higgins, M.S. 1952. On the statistical distributions of heights of sea waves. J. of Mar. Res., Vol XI, 245-266.
  18. Longuet-Higgins, M.S. 1983. On the Joint Distribution of Wave Periods and Amplitudes in a Random Wave Field. Proc. Roy. Soc. of London, 389(A), 241-258. https://doi.org/10.1098/rspa.1983.0107
  19. Ochi, M.K. 1990. Applied probability and stochastic progresses. University of Florida, Wiley Interscience, USA.
  20. Park, S.H. and Cho, Y.J. 2019. The joint distribution of wave height and its associated period in nonlinear random waves. Journal of Korean Society of Coastal and Ocean Engineers (submitted).
  21. Tayfun, M.A. 1993. Joint distribution of large wave heights and associated periods. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(3).
  22. Tucker, M.J. and Pitt, E.G. 2001. Waves in ocean engineering, Elsevier, Amsterdam.
  23. van Vledder, G.P., Ruessink, G. and Rijnsdorp, D.P. 2013. Individual wave height distributions in the coastal zone: Measurements and simulations and the effect of directional spreading. In Coastal Dynamics 2013: 7th International Conference on Coastal Dynamics, Arcachon, France.