• Title/Summary/Keyword: P-spline

Search Result 33, Processing Time 0.028 seconds

New CAD Datarization Technique of Shoe Lasts for Automation of the Adaptive Lasting Machine (적응형 라스팅기의 자동화를 위한 제화용 라스트의 새로운 CAD Data화 기법)

  • Kim, S.H.;Jang, K.K.;Kim, K.P.;Huh, H.;Kwon, D.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2001
  • Lasting machines for shoe manufacturing are continuously developed with the aid of automation and CAM(Computer Aided Manufacturing). Although automation and CAM techniques have tremendously reduced the labor in shoe manufacturing, there still remain some parts manufactured by experts. In order to enhance the capability and efficiency of machines for labor-free shoe manufacturing, CAD data of a shoe last is essential. While CAD datarization takes the fundamental role in the shoe design and manufacturing, there has been little research for the CAD datarization of a shoe last. In this paper, a new procedure for CAD datarization of a shoe last using finite element patches and a tension sl)line method is proposed for application to shoe manufacturing machines. The outer line of a shoe-last sole is interpolated by a tension spline method and bonding lines are extracted from the shoe CAD data. Data set for a control algorithm of the tasting machine can be produced from the CAD data.

  • PDF

Design of Propeller Geometry Using Blade Sections Adapted to Surface Streamlines (표면 유선에 정렬된 날개 단면을 이용한 프로펠러 형상 설계)

  • Kim, Yoo-Chul;Kim, Tae-Wan;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.440-450
    • /
    • 2006
  • In this paper, we suggest a design concept of defining the propeller geometry by stacking up the blade sections aligned with propeller surface streamlines. Numerical and experimental propeller open water(P.O.W.) characteristics of a newly designed propeller are presented. The surface streamlines for a propeller are obtained by using the panel method. Redefinition of the blade sections aligned with the streamlines is provided together with 8-spline modeling, by which we manufacture model propellers. We carried out the P.O.W, tests in a towing tank in order to show the effect of the present method on P.O.W. characteristics.

조사구간 윈도우 변형을 이용한 PIV에서 보간법 평가

  • Kim, Byeong-Jae;Seong, Hyeong-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.25-35
    • /
    • 2006
  • We have evaluated the performances of the following six interpolation schemes used for window deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange interpolations. Artificially generated images comprised of particles of diameter in a range $1.1{\leq}d_p\leq10.0$ pixel were investigated. Three particle diameters were selected for detailed evaluation: $d_p$=2.2, 3.3, 4.4 pixel with a constant particle concentration 0.02 $particle/pixel^2$. Two flow patterns were considered: uniform and shear flows. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

  • PDF

A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods (영상보간법을 이용한 디지털 치근단 방사선영상의 개선에 관한 연구)

  • Song Nam-Kyu;Koh Kawng-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.387-413
    • /
    • 1998
  • Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR(Signal to Noise Ratio) and MTF(Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value(75.96dB) was obtained with cubic convolution method and the lowest SNR value(72.44dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan(P<0.05). 3. There were significant differences of SNR values between 60kVp and 70kVp in seven interpolation methods. There were significant differences of SNR values between facet model method and those of the other methods at 60kVp(P<0.05), but there were not significant differences of SNR values among seven interpolation methods at 70kVp(P>0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P< 0.05). 5. The speed of computation time was the fastest with nearest -neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method among seven interpolation methods.

  • PDF

Determination of Vertical Mode in a Three-layered Open Sea (3층구조 외해역에서의 취역류 연식모드 결정기법)

  • Jung, Kyung-Tae;Jin, Jae-Yuoll;So, Jae-Kwi;John Noye
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.190-199
    • /
    • 1990
  • The solution for wind drift current in a three-layered open sea region is derived using the Galerkin-Eigenfunction mothod. The presence of discontinuities in the vertical eddy viscosity required a definition of a scalar product which involves the summation of integrals defined over each layer. The expansion of fourth-order B-spline functions is used in determining eigenvalues and corresponding eigenfunctions. In a three-layered system a low value of eddy viscosity is prescribed within the pycnocline to represent the suppression of turburent intensity at the thermocline level. A high concentration of knots within the pycnocline is important in determining eigenfunctions and the associated eigenvalues accurately. Due to the global property of eigenfunctions nonphysical oscillations appear in the current profiles below the surface layer, particularly within the pycnocline.

  • PDF

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

B-spline polynomials models for analyzing growth patterns of Guzerat young bulls in field performance tests

  • Ricardo Costa Sousa;Fernando dos Santos Magaco;Daiane Cristina Becker Scalez;Jose Elivalto Guimaraes Campelo;Clelia Soares de Assis;Idalmo Garcia Pereira
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.817-825
    • /
    • 2024
  • Objective: The aim of this study was to identify suitable polynomial regression for modeling the average growth trajectory and to estimate the relative development of the rib eye area, scrotal circumference, and morphometric measurements of Guzerat young bulls. Methods: A total of 45 recently weaned males, aged 325.8±28.0 days and weighing 219.9±38.05 kg, were evaluated. The animals were kept on Brachiaria brizantha pastures, received multiple supplementations, and were managed under uniform conditions for 294 days, with evaluations conducted every 56 days. The average growth trajectory was adjusted using ordinary polynomials, Legendre polynomials, and quadratic B-splines. The coefficient of determination, mean absolute deviation, mean square error, the value of the restricted likelihood function, Akaike information criteria, and consistent Akaike information criteria were applied to assess the quality of the fits. For the study of allometric growth, the power model was applied. Results: Ordinary polynomial and Legendre polynomial models of the fifth order provided the best fits. B-splines yielded the best fits in comparing models with the same number of parameters. Based on the restricted likelihood function, Akaike's information criterion, and consistent Akaike's information criterion, the B-splines model with six intervals described the growth trajectory of evaluated animals more smoothly and consistently. In the study of allometric growth, the evaluated traits exhibited negative heterogeneity (b<1) relative to the animals' weight (p<0.01), indicating the precocity of Guzerat cattle for weight gain on pasture. Conclusion: Complementary studies of growth trajectory and allometry can help identify when an animal's weight changes and thus assist in decision-making regarding management practices, nutritional requirements, and genetic selection strategies to optimize growth and animal performance.

Development of Precision Forging Process on the Clutch Gear of a Counter Shaft (카운터샤프트 클러치 기어의 정밀성형 공정 개발)

  • Kim, H.P.;Kim, Y.J.
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.54-58
    • /
    • 2012
  • A counter shaft gear is an important part in the transmission system of vehicle. Its shape is relatively complicated and should meets high strength. Traditionally it has been manufactured as follows; the counter shaft gear has consisted of a clutch and helical body with teeth which are forged and machined for teeth respectively and then attached by frictional welding. In this study, a new hot forging process was proposed and designed so that the counter shaft gear is formed as one body without divide it into two parts. Furthermore, the precision forging process has been developed for the clutch teeth without additional grinding.

  • PDF

Accurate Prediction of Real-Time MPEG-4 Variable Bit Rate Video Traffic

  • Lee, Kang-Yong;Kim, Moon-Seong;Jang, Hee-Seon;Cho, Kee-Seong
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.823-825
    • /
    • 2007
  • In this letter, we propose a novel algorithm to predict MPEG-coded real-time variable bit rate (VBR) video traffic. From the frame size measurement, the algorithm extracts the statistical property of video traffic and utilizes it for the prediction of the next frame for I-, P-, and B- frames. The simulation results conducted with real-world MPEG-4 VBR video traces show that the proposed algorithm is capable of providing more accurate prediction than those in the research literature.

  • PDF

Bayesian curve-fitting with radial basis functions under functional measurement error model

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.749-754
    • /
    • 2015
  • This article presents Bayesian approach to regression splines with knots on a grid of equally spaced sample quantiles of the independent variables under functional measurement error model.We consider small area model by using penalized splines of non-linear pattern. Specifically, in a basis functions of the regression spline, we use radial basis functions. To fit the model and estimate parameters we suggest a hierarchical Bayesian framework using Markov Chain Monte Carlo methodology. Furthermore, we illustrate the method in an application data. We check the convergence by a potential scale reduction factor and we use the posterior predictive p-value and the mean logarithmic conditional predictive ordinate to compar models.