• 제목/요약/키워드: P-graph.

검색결과 289건 처리시간 0.027초

ODD-EVEN GRACEFUL GRAPHS

  • Sridevi, R.;Navaneethakrishnan, S.;Nagarajan, A.;Nagarajan, K.
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.913-923
    • /
    • 2012
  • The Odd-Even graceful labeling of a graph G with $q$ edges means that there is an injection $f:V (G)$ to $\{1,3,5,{\cdots},2q+1\}$ such that, when each edge $uv$ is assigned the label ${\mid}f(u)-f(v){\mid}$, the resulting edge labels are $\{2,4,6,{\cdots},2q\}$. A graph which admits an odd-even graceful labeling is called an odd-even graceful graph. In this paper, we prove that some well known graphs namely $P_n$, $P_n^+$, $K_{1,n}$, $K_{1,2,n}$, $K_{m,n}$, $B_{m,n}$ are Odd-Even graceful.

SOME RESULTS ON STARLIKE TREES AND SUNLIKE GRAPHS

  • Mirko, Lepovic
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.109-123
    • /
    • 2003
  • A tree is called starlike if it has exactly one vertex of degree greate. than two. In [4] it was proved that two starlike trees G and H are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, let G be a simple graph of order n with vertex set V(G) : {1,2, …, n} and let H = {$H_1$, $H_2$, …, $H_{n}$} be a family of rooted graphs. According to [2], the rooted product G(H) is the graph obtained by identifying the root of $H_{i}$ with the i-th vertex of G. In particular, if H is the family of the paths $P_k_1,P_k_2,...P_k_2$ with the rooted vertices of degree one, in this paper the corresponding graph G(H) is called the sunlike graph and is denoted by G($k_1,k_2,...k_n$). For any $(x_1,x_2,...,x_n)\;\in\;{I_*}^n$, where $I_{*}$ = : {0,1}, let G$(x_1,x_2,...,x_n)$ be the subgraph of G which is obtained by deleting the vertices $i_1,i_2,...i_j\;\in\;V(G)\;(O\leq j\leq n)$, provided that $x_i_1=x_i_2=...=x_i_j=o.\;Let \;G[x_1,x_2,...x_n]$ be characteristic polynomial of G$(x_1,x_2,...,x_n)$, understanding that G[0,0,...,0] $\equiv$1. We prove that $G[k_1,k_2,...,k_n]-\sum_{x\in In}[{\prod_{\imath=1}}^n\;P_k_i+x_i-2(\lambda)](-1)...G[x_1,x_2,...,X_n]$ where x=($x_1,x_2,...,x_n$);G[$k_1,k_2,...,k_n$] and $P_n(\lambda)$ denote the characteristic polynomial of G($k_1,k_2,...,k_n$) and $P_n$, respectively. Besides, if G is a graph with $\lambda_1(G)\;\geq1$ we show that $\lambda_1(G)\;\leq\;\lambda_1(G(k_1,k_2,...,k_n))<\lambda_1(G)_{\lambda_1}^{-1}(G}$ for all positive integers $k_1,k_2,...,k_n$, where $\lambda_1$ denotes the largest eigenvalue.

PAIR DIFFERENCE CORDIALITY OF CERTAIN SUBDIVISION GRAPHS

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of applied mathematics & informatics
    • /
    • 제42권1호
    • /
    • pp.1-14
    • /
    • 2024
  • Let G = (V, E) be a (p, q) graph. Define $$\begin{cases}\frac{p}{2},\:if\:p\:is\:even\\\frac{p-1}{2},\:if\:p\:is\:odd\end{cases}$$ and L = {±1, ±2, ±3, ···, ±ρ} called the set of labels. Consider a mapping f : V → L by assigning different labels in L to the different elements of V when p is even and different labels in L to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that |Δf1 - Δfc1| ≤ 1, where Δf1 and Δfc1 respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate the pair difference cordial labeling behavior of subdivision of some graphs.

CUBIC s-REGULAR GRAPHS OF ORDER 12p, 36p, 44p, 52p, 66p, 68p AND 76p

  • Oh, Ju-Mok
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.651-659
    • /
    • 2013
  • A graph is $s$-regular if its automorphism group acts regularly on the set of its $s$-arcs. In this paper, the cubic $s$-regular graphs of order 12p, 36p, 44p, 52p, 66p, 68p and 76p are classified for each $s{\geq}1$ and each prime $p$. The number of cubic $s$-regular graphs of order 12p, 36p, 44p, 52p, 66p, 68p and 76p is 4, 3, 7, 8, 1, 4 and 1, respectively. As a partial result, we determine all cubic $s$-regular graphs of order 70p except for $p$ = 31, 41.

GFDD에 기초한 디지털논리시스템 구성 (Construction of Digital Logic Systems based on the GFDD)

  • 박춘명
    • 한국정보통신학회논문지
    • /
    • 제9권8호
    • /
    • pp.1774-1779
    • /
    • 2005
  • 본 논문에서는 그래프 이론에 기초를 둔 GFDD를 사용하여 디지털논리시스템을 구성하는 한가지 방법을 제안하였다. 제안한 방법은 먼저 유한체와 그래프 이론의 수학적 성질을 논의하였으며, 단일변수에 대한 동작영역과 함수영역간의 변환을 용이하게 하기 위한 변환행렬 $\psi$GF(P)(1)과 $\xi$GF(P)(1)을 논의하였다. 그리고 디지털스위칭함수를 구하기 위한 Reed-Muller 확장을 논의하였으며, 이를 다변수인 경우로 확장하기 위해 Kronecker Product를 논의하였다.

THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS

  • Lee, Jonghyeon;Shin, Heesung
    • Korean Journal of Mathematics
    • /
    • 제27권2호
    • /
    • pp.525-534
    • /
    • 2019
  • Let $P(G,{\lambda})$ denote the number of proper vertex colorings of G with ${\lambda}$ colors. The chromatic polynomial $P(C_n,{\lambda})$ for the cycle graph $C_n$ is well-known as $$P(C_n,{\lambda})=({\lambda}-1)^n+(-1)^n({\lambda}-1)$$ for all positive integers $n{\geq}1$. Also its inductive proof is widely well-known by the deletion-contraction recurrence. In this paper, we give this inductive proof again and three other proofs of this formula of the chromatic polynomial for the cycle graph $C_n$.

SUPER VERTEX MEAN GRAPHS OF ORDER ≤ 7

  • LOURDUSAMY, A.;GEORGE, SHERRY
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.565-586
    • /
    • 2017
  • In this paper we continue to investigate the Super Vertex Mean behaviour of all graphs up to order 5 and all regular graphs up to order 7. Let G(V,E) be a graph with p vertices and q edges. Let f be an injection from E to the set {1,2,3,${\cdots}$,p+q} that induces for each vertex v the label defined by the rule $f^v(v)=Round\;\left({\frac{{\Sigma}_{e{\in}E_v}\;f(e)}{d(v)}}\right)$, where $E_v$ denotes the set of edges in G that are incident at the vertex v, such that the set of all edge labels and the induced vertex labels is {1,2,3,${\cdots}$,p+q}. Such an injective function f is called a super vertex mean labeling of a graph G and G is called a Super Vertex Mean Graph.

REGULARITY OF SOAP FILM-LIKE SURFACES SPANNING GRAPHS IN A RIEMANNIAN MANIFOLD

  • Gulliver, Robert;Park, Sung-Ho;Pyo, Jun-Cheol;Seo, Keom-Kyo
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.967-983
    • /
    • 2010
  • Let M be an n-dimensional complete simply connected Riemannian manifold with sectional curvature bounded above by a nonpositive constant $-{\kappa}^2$. Using the cone total curvature TC($\Gamma$) of a graph $\Gamma$ which was introduced by Gulliver and Yamada [8], we prove that the density at any point of a soap film-like surface $\Sigma$ spanning a graph $\Gamma\;\subset\;M$ is less than or equal to $\frac{1}{2\pi}\{TC(\Gamma)-{\kappa}^2Area(p{\times}\Gamma)\}$. From this density estimate we obtain the regularity theorems for soap film-like surfaces spanning graphs with small total curvature. In particular, when n = 3, this density estimate implies that if $TC(\Gamma)$ < $3.649{\pi}\;+\;{\kappa}^2\inf\limits_{p{\in}F}Area(p{\times}{\Gamma})$, then the only possible singularities of a piecewise smooth (M, 0, $\delta$)-minimizing set $\Sigma$ are the Y-singularity cone. In a manifold with sectional curvature bounded above by $b^2$ and diameter bounded by $\pi$/b, we obtain similar results for any soap film-like surfaces spanning a graph with the corresponding bound on cone total curvature.

The Line n-sigraph of a Symmetric n-sigraph-V

  • Reddy, P. Siva Kota;Nagaraja, K.M.;Geetha, M.C.
    • Kyungpook Mathematical Journal
    • /
    • 제54권1호
    • /
    • pp.95-101
    • /
    • 2014
  • An n-tuple ($a_1,a_2,{\ldots},a_n$) is symmetric, if $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$. Let $H_n$ = {$(a_1,a_2,{\ldots},a_n)$ ; $a_k$ ${\in}$ {+,-}, $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$} be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n$ = (G,${\sigma}$) ($S_n$ = (G,${\mu}$)), where G = (V,E) is a graph called the underlying graph of $S_n$ and ${\sigma}$:E ${\rightarrow}H_n({\mu}:V{\rightarrow}H_n)$ is a function. The restricted super line graph of index r of a graph G, denoted by $\mathcal{R}\mathcal{L}_r$(G). The vertices of $\mathcal{R}\mathcal{L}_r$(G) are the r-subsets of E(G) and two vertices P = ${p_1,p_2,{\ldots},p_r}$ and Q = ${q_1,q_2,{\ldots},q_r}$ are adjacent if there exists exactly one pair of edges, say $p_i$ and $q_j$, where $1{\leq}i$, $j{\leq}r$, that are adjacent edges in G. Analogously, one can define the restricted super line symmetric n-sigraph of index r of a symmetric n-sigraph $S_n$ = (G,${\sigma}$) as a symmetric n-sigraph $\mathcal{R}\mathcal{L}_r$($S_n$) = ($\mathcal{R}\mathcal{L}_r(G)$, ${\sigma}$'), where $\mathcal{R}\mathcal{L}_r(G)$ is the underlying graph of $\mathcal{R}\mathcal{L}_r(S_n)$, where for any edge PQ in $\mathcal{R}\mathcal{L}_r(S_n)$, ${\sigma}^{\prime}(PQ)$=${\sigma}(P){\sigma}(Q)$. It is shown that for any symmetric n-sigraph $S_n$, its $\mathcal{R}\mathcal{L}_r(S_n)$ is i-balanced and we offer a structural characterization of super line symmetric n-sigraphs of index r. Further, we characterize symmetric n-sigraphs $S_n$ for which $\mathcal{R}\mathcal{L}_r(S_n)$~$\mathcal{L}_r(S_n)$ and $$\mathcal{R}\mathcal{L}_r(S_n){\sim_=}\mathcal{L}_r(S_n)$$, where ~ and $$\sim_=$$ denotes switching equivalence and isomorphism and $\mathcal{R}\mathcal{L}_r(S_n)$ and $\mathcal{L}_r(S_n)$ are denotes the restricted super line symmetric n-sigraph of index r and super line symmetric n-sigraph of index r of $S_n$ respectively.

부산점토 재성형 시료의 압축특성에 관한 연구 (The study for compressibility of reconsititued Busan clay)

  • 홍성진;이문주;최영민;김민태;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1141-1146
    • /
    • 2009
  • The compressibility of clay has been expressed e-log p' graph. In natural clay, e-log p' graph are changed by deposition condition and chemical cementation as well as Atterberg limits, whereas in reconstituted clay, it is generally known that e-log p’ curve is varied with Atterberg limits. However, e-log p' graph is possible to change according to the reconstituting methods and test conditions. In this study, consolidation tests are performed as various test condition for reconstituted Busan clay. Test results show that the relationship e/$e_L$ and log p' is almost constant with $e_L$. And the compression index obtained from slurry method sample is larger than one obtained from kneading method sample. Intrinsic compression line (ICL) of Busan clay is identical with ICL suggested by Burland.

  • PDF