• Title/Summary/Keyword: P-gal

Search Result 314, Processing Time 0.042 seconds

Molecular Characterization of Cold-Inducible ${\beta}$-Galactosidase from Arthrobacter sp. ON14 Isolated from Antarctica

  • Xu, Ke;Tang, Xixiang;Gai, Yingbao;Mehmood, Muhammad Aamer;Xiao, Xiang;Wang, Fengping
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • A psychrotrophic bacterium, Arthrobacter sp. ON14, isolated from Antarctica, was shown to exhibit a high ${\beta}$-galactosidase activity at a low temperature. A genomic library of ON14 was constructed and screened for ${\beta}$-galactosidase genes on functional plates containing 5-bromo-4-chloro-3-indolyl-${\beta}$-D-galactopyranoside (X-gal) as the substrate. Two different ${\beta}$-galactosidase genes, named as galA, galB, were found in ON14. Computational analyses of the genes revealed that the encoded protein GalA belongs to family 2 of glycosyl hydrolysases and is a cold-active protein, whereas GalB belongs to family 42 of glycosyl hydrolysases and is a mesophilic protein. Reverse transcription analyses revealed that the expression of galA is highly induced at a low temperature ($4^{\circ}C$ ) and repressed at a high temperature ($28^{\circ}C$ ) when lactose is used as the sole carbon source. Conversely, the expression of galB is inhibited at a low temperature and induced at a high temperature. The purified GalA showed its peak activity at $15^{\circ}C$ and pH 8. The mineral ions $Na^+$, $K^+$, $Mg^{2+}$, and $Mn^{2+}$ were identified as enzyme activators, whereas $Ca^{2+}$ had no influence on the enzyme activity. An enzyme stability assay revealed that the activity of GalA is significantly decreased when it is incubated at $45^{\circ}C$ for 2 h, and all its activity is lost when it is incubated at $50^{\circ}C$.

Expression of ${\alpha}$-Galactosidase Gene from Leuconostoc mesenteroides SY1 in Lactobacillus brevis 2.14

  • Lee, Kang-Wook;Park, Ji-Yeong;Park, Jae-Yong;Chun, Ji-Yeon;Kim, Jeong-Hwan
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1115-1118
    • /
    • 2008
  • ${\alpha}$-Galactosidase gene (aga) from Leuconostoc mesenteroides SY1 was expressed in a heterologous host, Lactobacillus brevis 2.14 using an Escherichia coli-Leuconostoc shuttle vector, pSJE. pSJEaga (pSJE carrying aga) was introduced into Lactobacillus brevis 2.14 by electroporation and transformation efficiency was $1.1{\times}10^3$ per ${\mu}g$ DNA. L. brevis transformants (TFs) showed higher ${\alpha}$-galactosidase (${\alpha}$-Gal) activities than cells containing pSJE. Transcription levels of aga in L. brevis 2.14 grown on different carbon sources (1%, w/v) were examined by slot blot analysis. Aga transcript levels and ${\alpha}$-Gal activities were higher in cells grown on melibiose, raffinose, and galactose than cells on glucose, sucrose, and fructose. Western blot result showed that L. brevis 2.14 harboring pSJEaga produced much more ${\alpha}$-Gal when grown on melibiose than on glucose.

An Approach for Lactulose Production Using the CotX-Mediated Spore-Displayed β-Galactosidase as a Biocatalyst

  • Wang, He;Yang, Ruijin;Hua, Xiao;Zhang, Wenbin;Zhao, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1267-1277
    • /
    • 2016
  • Currently, enzymatic synthesis of lactulose, a synthetic prebiotic disaccharide, is commonly performed with glycosyl hydrolases. In this work, a new type of lactulose-producing biocatalyst was developed by displaying β-galactosidase from Bacillus stearothermophilus IAM11001 (Bs-β-Gal) on the surface of Bacillus subtilis 168 spores. Localization of β-Gal on the spore surface as a fusion to CotX was verified by western blot analysis, immunofluorescence microscopy, and flow cytometry. The optimum pH and temperature for the resulting spore-displayed β-Gal was 6.0 and 75℃, respectively. Under optimal conditions, it showed maximum activity of 0.42 U/mg spores (dry weight). Moreover, the spore-displayed CotX-β-Gal was employed as a whole cell biocatalyst to produce lactulose, yielding 8.8 g/l from 200 g/l lactose and 100 g/l fructose. Reusability tests showed that the spore-displayed CotX-β-Gal retained around 30.3% of its initial activity after eight successive conversion cycles. These results suggest that the CotX-mediated spore-displayed β-Gal may provide a promising strategy for lactulose production.

Production of Galactooligosaccharide by $\beta$-Galactosidase from Kluyveromyces maxianus var lactis OE-20

  • Kim, Jae-Ho;Lee, Dae-Hyung;Lee, Jong-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.337-340
    • /
    • 2001
  • A galactooligosaccharide(GalOS)-producing yeast, OE-20 was selected from forty seven strains of yeast growing in Korean traditional Meju (cooked soybean) and the yeast was tentatively identified as Kluyveromyces maxianus var lactis by its morphology and fermentation profile. A maximum yield of 25.1%(w/w) GalOS, which corresponds to 25.1 g of GalOS per liter, was obtained from the reaction of 100 g per liter of lactose solution at 3$0^{\circ}C$, pH 7.0 for 18 h with an intracellular crude $\beta$-galactosidase. Glucose and galactosidase were found to inhibit GalOS formation. The GalOS that were purified by active carbon and celite 545 column chromatography were supplemented in MRS media and a stimulated growth was observed of some intestinal bacteria. In particular the growth rate of Bifidobacterium infantis in the GalOS containing MRS broth increased up to 12.5% compared to that of the MRS-glucose broth during a 48h incubation period.

  • PDF

Heterologous Expression of a Thermostable α-Galactosidase from Parageobacillus thermoglucosidasius Isolated from the Lignocellulolytic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Cui, MingYu;Wang, Qiong;Guo, Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.749-760
    • /
    • 2022
  • α-Galactosidase is a debranching enzyme widely used in the food, feed, paper, and pharmaceuticals industries and plays an important role in hemicellulose degradation. Here, T26, an aerobic bacterial strain with thermostable α-galactosidase activity, was isolated from laboratory-preserved lignocellulolytic microbial consortium TMC7, and identified as Parageobacillus thermoglucosidasius. The α-galactosidase, called T26GAL and derived from the T26 culture supernatant, exhibited a maximum enzyme activity of 0.4976 IU/ml when cultured at 60℃ and 180 rpm for 2 days. Bioinformatics analysis revealed that the α-galactosidase T26GAL belongs to the GH36 family. Subsequently, the pET-26 vector was used for the heterologous expression of the T26 α-galactosidase gene in Escherichia coli BL21 (DE3). The optimum pH for α-galactosidase T26GAL was determined to be 8.0, while the optimum temperature was 60℃. In addition, T26GAL demonstrated a remarkable thermostability with more than 93% enzyme activity, even at a high temperature of 90℃. Furthermore, Ca2+ and Mg2+ promoted the activity of T26GAL while Zn2+ and Cu2+ inhibited it. The substrate specificity studies revealed that T26GAL efficiently degraded raffinose, stachyose, and guar gum, but not locust bean gum. This study thus facilitated the discovery of an effective heat-resistant α-galactosidase with potent industrial application. Meanwhile, as part of our research on lignocellulose degradation by a microbial consortium, the present work provides an important basis for encouraging further investigation into this enzyme complex.

Developmental Characteristics of SCNT Pig Embryos Knocked-out of Alpha-1,3-Galactosyltransferase Gene

  • Shim, Joo-Hyun;Park, Mi-Rung;Yang, Byoung-Chul;Ko, Yeoung-Gyu;Oh, Keon-Bong;Lee, Jeong-Woong;Woo, Jae-Seok;Park, Eung-Woo;Park, Soo-Bong;Hwang, Seong-Soo
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.157-162
    • /
    • 2009
  • This study was performed to comprehend the developmental characteristics of cloned embryos knocked out (KO) of $\alpha$-1,3-galactosyltransferase (GalT) gene. Immature oocytes were collected and cultured for 40 hrs (1-step) or 20hrs (with hormone) + 20hrs (without hormone) (2-step). The embryos transferred with miniature pig ear fibroblast cell were used as control. The reconstructed embryos were cultured in PZM-3 with 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. To determine the quality of the blstocysts, TUNEL and quantitative realtime RT-PCR were performed. The embryos were transferred to a surrogate (Landrace) at an earlier stage of the estrus cycle. The maturation rate was significantly higher in 2-step method than that of 1-step (p<0.05). The blastocyst development of GalT KO embryos was significantly lower than that of normal cloned embryos (p<0.05). The total and apoptotic cell number of GalT KO blastocysts was not different statistically from control. The relative abundance of Bax-$\alpha$/Bcl-xl ratio was significantly higher in both cloned blastocysts than that of in vivo blastocysts (p<0.05). Taken together, it can be postulated that the lower developmental potential and higher expression of apoptosis related genes in GalT KO SCNT embryos might be a cause of a low efficiency of GalT KO cloned miniature pig production.

Hepatoprotective Activity of Fermented Curcuma longa L. on Galactosamine-Intoxicated Rats (발효울금의 갈락토사민 투여에 의한 흰쥐의 간독성에 대한 보효 효과)

  • Kim, Yong-Jae;You, Yang-Hee;Jun, Woo-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.6
    • /
    • pp.790-795
    • /
    • 2012
  • In this study, the general components and minerals of fermented Curcuma longa L. (FC) by Aspergillus oryzae were examined as well as the hepatoprotective effects of FC on acute hepatotoxicity induced by a single dose of galactosamine (GalN, 650 mg/kg body weight (b.w.)). The FC was found to consist of 0.15% moisture, 4.68% crude fat, 4.35% crude protein, 6.92% crude fiber, and 6.83% crude ash. The P, Ca, and Mg levels in FC were also quantitatively analyzed. Male Sprague-Dawley rats were divided into six groups; nontreated control, GalN, 150 mg/kg b.w. of silymarin plus GalN, 30 mg/kg b.w. of FC plus GalN, 100 mg/kg b.w. of FC plus GalN, and 300 mg/kg b.w. of FC plus GalN. Pretreatment 300 mg/kg b.w. of FC during 14 days significantly decreased the increased in aspartate aminotransferase, alanine amino transferase, and triglyceride (TG) induced by GalN. Severe liver damage, hepatocellular necrosis, infiltration of inflammatory cells, and councilman body necrosis on histopathological liver tissues were observed in GalN treated rats. Administration of 300 mg/kg b.w. of FC significantly decreased the degree of live damage. These results suggest that FC displays hepatoprotective activity and FC was able to lower the TG levels in serum; thus, FC may serve as a useful material for health food and clinical conditions associated with liver disease.

Regulation of Nrf2 Transactivation Domain Activity by p160 RAC3/SRC3 and Other Nuclear Co-Regulators

  • Lin, Wen;Shen, Guoxiang;Yuan, Xiaoling;Jain, Mohit R.;Yu, Siwang;Zhang, Aihua;Chen, J. Don;Kong, Ah-Ng Tony
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.304-310
    • /
    • 2006
  • Transcription factor NF-E2-related factor 2 (Nrf2) regulates the induction of Phase II detoxifying enzymes and antioxidant enzymes in response to many cancer chemopreventive compounds. In this study, we investigated the role of receptor associated coactivator (RAC3) or steroid receptor coactivator-3 (SRC3) and other nuclear co-regulators including CBP/p300 (CREB-binding protein), CARM1 (Coactivator-associated arginine methyltransferase), PRMT1 (Protein arginine methyl-transferase 1), and p/CAF (p300/CBP-associated factor) in the transcriptional activation of a chimeric Gal4-Nrf2-Luciferase system containing the transactivation domain (TAD) of Nrf2 in HepG2 cells. The results indicated that RAC3 up-regulated the transactivation activity of Gal4-Nrf2-(1-370) in a dose-dependent manner. The enhancement of transactivation domain activity of Gal4-Nrf2-(1-370) by RAC3 was dampened in the presence of dominant negative mutants of RAC3. Next we studied the effects of other nuclear co-regulators including CBP/p300, CARM1, PRMT1 and p/CAF, and the results showed that they had different level of positive effects on this transactivation domain activity of Gal4-Nrf2-(1-370). But importantly, synergistic effects of these co-regulators in the presence of RAC3/SRC3 on the transactivation activity of Gal4-Nrf2-(1-370) were observed. In summary, our present study showed for the first time that the 160 RAC3/SRC3 is involved in the functional transactivation of TAD of Nrf2 and that the other nuclear co-regulators such as CBP/p300, CARM1, PRMT1 and p/CAF can also transcriptionally activate this TAD of Nrf2 and that they could further enhance the transactivation activity mediated by RAC3/SRC3.

Hepatoprotective Effects of 25 Herbal Formulas in Primary Rat Hepatocytes (한약 처방 25종에 대한 간 보호 효과 비교 연구)

  • Jin, Seong Eun;Jeong, Soo-Jin;Shin, Hyeun-Kyoo;Ha, Hyekyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.5
    • /
    • pp.617-624
    • /
    • 2013
  • The purpose of this study is to investigate the protective effects of 25 herbal formulas on acetaminophen (APAP) or D-galactosamine (D-GalN)-induced hepatotoxicity in primary rat hepatocytes. Cell viability was measured using by Cell Counting Kit-8. 15 kinds of herbal formulas significantly reversed the cell viabilities of D-GalN-treated rat hepatocytes compared with D-GalN alone (p<0.05). In particular, 9 herbal formulas (Bangpungtongseong-san, Bojungikgi-tang, Galgeun-tang, Gumiganghwal-tang, Guibi-tang, Sagunja-tang, Samsoeum, Pyeongwi-san and Yijin-tang) showed the potent protective effects. However, 8 herbal formula exerted weak protective effects and 2 herbal formula did not exert effects on hepatotoxicity by D-GalN. On APAP-induced hepatotoxicity, 7 kinds of herbal formulas increased the viabilities of hepatocytes compare with APAP alone (p<0.05). These results could be provide a valuable information for the future in vivo or clinical studies to predict the hepatoprotective effects of herbal formulas.

Hepatoprotective Activity of Dandelion (Taraxacum officinale) Water Extract against D-Galactosamine-Induced Hepatitis in Rats (D-Galactosamine으로 유발된 간손상에 대한 민들레 열수추출물의 예방효과)

  • Park, Ji-Young;Park, Chung-Mu;Kim, Jin-Ju;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • This study aimed to investigate the protective effect of dandelion water extract (DWE) on liver injury induced by D-galactosamine (GalN) in Sprague-Dawley rats. Fifty rats were divided into 5 groups; normal control (C), DWE-control (DWE-C: saline injection after feeding 3% DWE diet), GalN-control (GalN-C: GalN injection after normal diet), DWE I (GalN injection after feeding 1.5% DWE diet), and DWE II (GalN injection after feeding 3% DWE diet). After 2 weeks, the acute hepatitis was induced by GalN (650 mg/kg, i.p.) and 24 hrs later, all rats were sacrificed. The DWE supplement ameliorated the serum alanine and aspartate aminotransferase (AST, ALT) as well as alkaline phosphatase (ALP) and tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$. Hepatic antioxidative enzyme activities, such as catalase, GSH peroxidase, GSH reductase, and Mn-superoxide dismutase (SOD) were slightly or significantly elevated by the treatment of DWE. Moreover, the histological examination corresponded with these biochemical observations. According to these findings, dandelion could be used as a potential therapeutic material for treating chemically induced acute hepatitis.