Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02036

An Approach for Lactulose Production Using the CotX-Mediated Spore-Displayed β-Galactosidase as a Biocatalyst  

Wang, He (State Key Laboratory of Food Science and Technology, Jiangnan University)
Yang, Ruijin (School of Food Science and Technology, Jiangnan University)
Hua, Xiao (School of Food Science and Technology, Jiangnan University)
Zhang, Wenbin (School of Food Science and Technology, Jiangnan University)
Zhao, Wei (School of Food Science and Technology, Jiangnan University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.7, 2016 , pp. 1267-1277 More about this Journal
Abstract
Currently, enzymatic synthesis of lactulose, a synthetic prebiotic disaccharide, is commonly performed with glycosyl hydrolases. In this work, a new type of lactulose-producing biocatalyst was developed by displaying β-galactosidase from Bacillus stearothermophilus IAM11001 (Bs-β-Gal) on the surface of Bacillus subtilis 168 spores. Localization of β-Gal on the spore surface as a fusion to CotX was verified by western blot analysis, immunofluorescence microscopy, and flow cytometry. The optimum pH and temperature for the resulting spore-displayed β-Gal was 6.0 and 75℃, respectively. Under optimal conditions, it showed maximum activity of 0.42 U/mg spores (dry weight). Moreover, the spore-displayed CotX-β-Gal was employed as a whole cell biocatalyst to produce lactulose, yielding 8.8 g/l from 200 g/l lactose and 100 g/l fructose. Reusability tests showed that the spore-displayed CotX-β-Gal retained around 30.3% of its initial activity after eight successive conversion cycles. These results suggest that the CotX-mediated spore-displayed β-Gal may provide a promising strategy for lactulose production.
Keywords
Surface display; spore; Bacillus subtilis; CotX; β-galactosidase; lactulose;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 McKenney PT, Driks A, Eskandarian HA, Grabowski P, Guberman J, Wang KH, et al. 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr. Biol. 20: 934-938.   DOI
2 Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K. 2013. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J. Med. Microbiol. 62: 1379-1385.   DOI
3 Nguyen QA, Schumann W. 2014. Use of IPTG-inducible promoters for anchoring recombinant proteins on the Bacillus subtilis spore surface. Protein Expr. Purif. 95: 67-76.   DOI
4 Nicholson WL, Setlow P. 1990. Sporulation, germination, and outgrowth, pp. 391-450. In Harwood CR, Cutting SM (eds.). Molecular Biological Methods for Bacillus. John Wiley & Sons, Chichester.
5 Qu Y, Wang J, Zhang Z, Shi S, Li D, Shen W, et al. 2014. Catalytic transformation of HODAs using an efficient meta-cleavage product hydrolase-spore surface display system. J. Mol. Catal. B Enzym. 102: 204-210.   DOI
6 Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
7 Sitanggang AB, Drews A, Kraume M. 2014. Continuous synthesis of lactulose in an enzymatic membrane reactor reduces lactulose secondary hydrolysis. Bioresour. Technol. 16: 108-115.   DOI
8 Song YS, Lee HU, Park C, Kim SW. 2013. Batch and continuous synthesis of lactulose from whey lactose by immobilized β-galactosidase. Food Chem. 136: 689-694.   DOI
9 Ståhl S, Uhlén M. 1997. Bacterial surface display: trends and progress. Trends Biotechnol. 15: 185-192.   DOI
10 Tavassoli S, Hinc K, Iwanicki A, Obuchowski M, Ahmadian G. 2013. Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst. Arch. Microbiol. 195: 197-202.   DOI
11 Vaheri M, Kaupinnen V. 1978. The formation of lactulose (4-O-β-galactopyranosylfructose) by β-galactosidase. Acta Pharm. Fenn. 87: 75-83.
12 Wang H, Yang R, Hua X, Zhao W, Zhang W. 2013. Enzymatic production of lactulose and 1-lactulose: current state and perspectives. Appl. Microbiol. Biotechnol. 97: 6167-6180.   DOI
13 Wang H, Yang R, Hua X, Zhao W, Zhang W. 2015. Functional display of active β-galactosidase on Bacillus subtilis spores using crust proteins as carriers. Food Sci. Biotechnol. 24: 1755-1759.   DOI
14 Wang H, Yang R, Jiang X, Hua X, Zhao W, Zhang W, Chen X. 2015. Expression and characterization of two β-galactosidases from Klebsiella pneumoniae 285 in Escherichia coli and their application in the enzymatic synthesis of lactulose and 1-lactulose. Z. Naturforsch. C 69: 479-487.
15 Wang M, Yang R, Hua X, Shen Q, Zhang W, Zhao W. 2015. Lactulose production from lactose by recombinant cellobiose 2-epimerase in permeabilised Escherichia coli cells. Int. J. Food Sci. Technol. 50: 1625-1631.   DOI
16 Zilhão R, Serrano M, Isticato R, Ricca E, Moran CP, Henriques AO. 2004. Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat. J. Bacteriol. 186: 1110-1119.   DOI
17 Cutting SM, Vander-Horn PB. 1990. Genetic analysis, pp. 27- 74. In Harwood CR, Cutting SM (eds.). Molecular Biological Methods for Bacillus. John Wiley & Sons, Chichester.
18 Adamczak M, Charubin D, Bednarski W. 2009. Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate. Chem. Pap. 63: 111-116.   DOI
19 Aider M, de Halleux D. 2007. Isomerization of lactose and lactulose production: review. Trends Food Sci. Technol. 18: 356-364.   DOI
20 Chen W, Chen H, Xia Y, Zhao J, Tian F, Zhang H. 2008. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J. Dairy Sci. 91: 1751-1758.   DOI
21 Driks A. 1999. Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63: 1-20.
22 Duetz WA, Van Beilen JB, Witholt B. 2001. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12: 419-425.   DOI
23 Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszy ska-Sularz G, et al. 2010. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb. Cell Fact. 9: 2.   DOI
24 Gao C, Xu X, Zhang X, Che B, Ma C, Qiu J, et al. 2011. Chemoenzymatic synthesis of N-acetyl-ᴅ-neuraminic acid from N-acetyl-ᴅ-glucosamine by using the spore surfacedisplayed N-acetyl-ᴅ-neuraminic acid aldolase. Appl. Environ. Microbiol. 77: 7080-7083.   DOI
25 Guerrero C, Vera C, Plou F, Illanes A. 2011. Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial β-galactosidases. J. Mol. Catal. B Enzym. 72: 206-212.   DOI
26 Henriques AO, Moran CP. 2000. Structure and assembly of the bacterial endospore coat. Methods 20: 95-110.   DOI
27 Hinc K, Iwanicki A, Obuchowski M. 2013. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb. Cell Fact. 12: 22.   DOI
28 Hwang BY, Pan JG, Kim BG, Kim JH. 2013. Functional display of active tetrameric β-galactosidase using Bacillus subtilis spore display system. J. Nanosci. Nanotechnol. 13: 2313-2319.   DOI
29 Imamura D, Kuwana R, Takamatsu H, Watabe K. 2010. Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J. Bacteriol. 192: 518-524.   DOI
30 Imamura D, Kuwana R, Takamatsu H, Watabe K. 2011. Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J. Bacteriol. 193: 4075-4080.   DOI
31 Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, et al. 2001. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 183: 6294-6301.   DOI
32 Kwon SJ, Jung HC, Pan JG. 2007. Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl. Environ. Microbiol. 73: 2251-2256.   DOI
33 Khatami S, Ashtiani FZ, Bonakdarpour B, Mehrdad M. 2014. The enzymatic production of lactulose via transglycosylation in conventional and non-conventional media. Int. Dairy J. 34: 74-79.   DOI
34 Kim JH, Lee CS, Kim BG. 2005. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210-214.   DOI
35 Kim YS, Park CS, Oh DK. 2006. Lactulose production from lactose and fructose by a thermostable β-galactosidase from Sulfolobus solfataricus. Enzyme Microb. Technol. 39: 903-908.   DOI
36 Lee SY, Choi JH, Xu Z. 2003. Microbial cell-surface display. Trends Biotechnol. 21: 45-52.   DOI
37 Lee YJ, Kim CS, Oh DK. 2004. Lactulose production by β-galactosidase in permeabilized cells of Kluyveromyces lactis. Appl. Microbiol. Biotechnol. 64: 787-793.   DOI
38 Li Q, Ning D, Wu C. 2010. Surface display of GFP using CotX as a molecular vector on Bacillus subtilis spores. Chin. J. Biotechnol. 26: 264-269.
39 Liu Y, Li S, Xu H, Wu L, Xu Z, Liu J, Feng X. 2014. Efficient production of ᴅ-tagatose using a food-grade surface display system. J. Agric. Food Chem. 62: 6756-6762.   DOI
40 Mauriello EMF, Duc LH, Isticato R, Cangiano G, Hong HA, De Felice M, et al. 2004. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22: 1177-1187.   DOI