• Title/Summary/Keyword: P-Q controller

Search Result 30, Processing Time 0.029 seconds

REPRESENTATION OF $L^1$-VALUED CONTROLLER ON BESOV SPACES

  • Jeong, Jin-Mun;Kim, Dong-Hwa
    • East Asian mathematical journal
    • /
    • v.19 no.1
    • /
    • pp.133-150
    • /
    • 2003
  • This paper will show that the relation (1.1) $$L^1({\Omega}){\subset}C_0(\bar{\Omega}){\subset}H_{p,q}$$ if 1/p'-1/n(1-2/q')<0 where p'=p/(p-1) and q'=q/(q-1) where $H_{p.q}=(W^{1,p}_0,W^{-1,p})_{1/q,q}$. We also intend to investigate the control problems for the retarded systems with $L^1(\Omega)$-valued controller in $H_{p,q}$.

  • PDF

Experimental Evaluation of Levitation and Imbalance Compensation for the Magnetic Bearing System Using Discrete Time Q-Parameterization Control (이산시간 Q 매개변수화 제어를 이용한 자기축수 시스템에 대한 부상과 불평형보정의 실험적 평가)

  • ;Fumio Matsumura
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.964-973
    • /
    • 1998
  • In this paper we propose a levitation and imbalance compensation controller design methodology of magnetic bearing system. In order to achieve levitation and elimination of unbalance vibartion in some operation speed we use the discrete-time Q-parameterization control. When rotor speed p = 0 there are no rotor unbalance, with frequency equals to the rotational speed. So in order to make levitatiom we choose the Q-parameterization controller free parameter Q such that the controller has poles on the unit circle at z = 1. However, when rotor speed p $\neq$ 0 there exist sinusoidal disturbance forces, with frequency equals to the rotational speed. So in order to achieve asymptotic rejection of these disturbance forces, the Q-parameterization controller free parameter Q is chosen such that the controller has poles on the unit circle at z = $exp^{ipTs}$ for a certain speed of rotation p ( $T_s$ is the sampling period). First, we introduce the experimental setup employed in this research. Second, we give a mathematical model for the magnetic bearing in difference equation form. Third, we explain the proposed discrete-time Q-parameterization controller design methodology. The controller free parameter Q is assumed to be a proper stable transfer function. Fourth, we show that the controller free parameter which satisfies the design objectives can be obtained by simply solving a set of linear equations rather than solving a complicated optimization problem. Finally, several simulation and experimental results are obtained to evaluate the proposed controller. The results obtained show the effectiveness of the proposed controller in eliminating the unbalance vibrations at the design speed of rotation.

  • PDF

Preemptive Ethernet Controller to Improve Real-Time Characteristics of IEC 61850 Protocol (IEC 61850 프로토콜의 실시간성 향상을 위한 선점형 이더넷 컨트롤러)

  • Lee, Bum-Yong;Park, Tae-Rim;Park, Jae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1923-1928
    • /
    • 2010
  • The IEC 61850 protocol proposed for the interoperability between IEDs(intelligent electronic devices) adopts the prioritized switched ethernet as its communication channel because substation bus is utilized to exchange both real-time and non real-time messages. The prioritized switched ethernet uses IEEE 802.1Q/p QoS(Quality of Service) in addition to IEEE 802.3 ethernet to enhance the real-time characteristics. However, IEEE 802.1Q/p QoS has priority-blocking problem that occurs when higher-priority frame transmission request during lower-priority frame transmission. To resolve this problem, this paper proposes P(Preemptive)-Ethernet. P-Ethernet uses the modified IEEE 802.1Q/p frame format and new priority preemption mechanism. This paper also implements P-Ethernet controller using FPGA (Virtex-4) and MicroBlaze processor. From the implementation results, P-Ethernet controller shows a improved latency and jitter of transmission period compare to the normal ethernet controller.

Nonlinear Control for A Robot Manipulator (로봇 매니퓰레이터에 대한 비선형 제어)

  • 이종용;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.12
    • /
    • pp.1333-1342
    • /
    • 1992
  • This paper deals with a robot manipulator having actuator which is described by equation $D(q)\ddot{q}=u-P(q\;\dot{q},\;\ddot{q})$ where u(t) is a control input. We employ two steps of controller design procedures. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis of the effect of uncertainty of the dynamics, which we study using robustness results in time domain based on a Lyapunov equation and the total stability theorem. Using this approach we simulate the performance of controller of a robot manipulator.

  • PDF

Real-Time Implementation of Shunt Active Filter P-Q Control Strategy for Mitigation of Harmonics with Different Fuzzy M.F.s

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.821-829
    • /
    • 2012
  • This research article presents a novel approach based on an instantaneous active and reactive power component (p-q) theory for generating reference currents for shunt active filter (SHAF). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the SHAF using the p-q control strategy has been evaluated under various source conditions. The performance of the proposed control strategy has been evaluated in terms of harmonic mitigation and DC link voltage regulation. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Fuzzy logic controller with different (Trapezoidal, Triangular and Gaussian) fuzzy M.F.s. The proposed SHAF with different fuzzy M.F.s is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategy. To validate the proposed approach, the system is also implemented on a real time digital simulator and adequate results are reported for its verifications.

Nonlinear control for robot manipulator (로보트 매니퓰레이터에 대한 비선형 제어)

  • 이종용;이승원;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.263-268
    • /
    • 1990
  • This paper deals with the manipulator with actuator described by equation D over bar(q) $q^{...}$ = u-p over bar (q, $q^{.}$, $q^{..}$) with a control input u. We imploy a simple method of control design which bas two stages. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis Of the effect of uncertain dynamics, which we study using robustness results In time domain based on a Lyapunav equation and the total stability theorem. I)sing this approach we simulate the performance of controller about a robotic manipulator with actuator.tor.r.

  • PDF

A Study on Ship Route Generation with Deep Q Network and Route Following Control

  • Min-Kyu Kim;Hyeong-Tak Lee
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.75-84
    • /
    • 2023
  • Ships need to ensure safety during their navigation, which makes route determination highly important. It must be accompanied by a route following controller that can accurately follow the route. This study proposes a method for automatically generating the ship route based on deep reinforcement learning algorithm and following it using a route following controller. To generate a ship route, under keel clearance was applied to secure the ship's safety and navigation chart information was used to apply ship navigation related regulations. For the experiment, a target ship with a draft of 8.23 m was designated. The target route in this study was to depart from Busan port and arrive at the pilot boarding place of the Ulsan port. As a route following controller, a velocity type fuzzy P ID controller that could compensate for the limitation of a linear controller was applied. As a result of using the deep Q network, a route with a total distance of 62.22 km and 81 waypoints was generated. To simplify the route, the Douglas-Peucker algorithm was introduced to reduce the total distance to 55.67 m and the number of way points to 3. After that, an experiment was conducted to follow the path generated by the target ship. Experiment results revealed that the velocity type fuzzy P ID controller had less overshoot and fast settling time. In addition, it had the advantage of reducing the energy loss of the ship because the change in rudder angle was smooth. This study can be used as a basic study of route automatic generation. It suggests a method of combining ship route generation with the route following control.

Improvement of Dynamic Behavior of Shunt Active Power Filter Using Fuzzy Instantaneous Power Theory

  • Eskandarian, Nasser;Beromi, Yousef Alinejad;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1303-1313
    • /
    • 2014
  • Dynamic behavior of the harmonic detection part of an active power filter (APF) has an essential role in filter compensation performances during transient conditions. Instantaneous power (p-q) theory is extensively used to design harmonic detectors for active filters. Large overshoot of p-q theory method deteriorates filter response at a large and rapid load change. In this study the harmonic estimation of an APF during transient conditions for balanced three-phase nonlinear loads is conducted. A novel fuzzy instantaneous power (FIP) theory is proposed to improve conventional p-q theory dynamic performances during transient conditions to adapt automatically to any random and rapid nonlinear load change. Adding fuzzy rules in p-q theory improves the decomposition of the alternating current components of active and reactive power signals and develops correct reference during rapid and random current variation. Modifying p-q theory internal high-pass filter performance using fuzzy rules without any drawback is a prospect. In the simulated system using MATLAB/SIMULINK, the shunt active filter is connected to a rapidly time-varying nonlinear load. The harmonic detection parts of the shunt active filter are developed for FIP theory-based and p-q theory-based algorithms. The harmonic detector hardware is also developed using the TMS320F28335 digital signal processor and connected to a laboratory nonlinear load. The software is developed for FIP theory-based and p-q theory-based algorithms. The simulation and experimental tests results verify the ability of the new technique in harmonic detection of rapid changing nonlinear loads.

Design of Low Cost Controller for 5[kVA] 3-Phase Active Power Filter (5[kVA]급 3상 능동전력필터를 위한 저가형 제어기 설계)

  • 이승요;채영민;최해룡;신우석;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.26-34
    • /
    • 1999
  • According to increase of nonlinear power electronics equipment, active power filters have been researched and developed for many years to compensate harmonic disturbances and reactive power. However the commercial of active power filter is being proceeded slowly, because the cost of active power filter compared to the passive filter for harmonic and reactive power compensation is expensive. Especially, the use of DSP (Digital Signal Processing) chip, which is frequently used to control 3-phase active power filter, is a factor of increasing the cost of active power filters. On the other hand, the use of only analog controller makes the controller's circuits much more complicate and depreciates the flexibilities of controller. In this paper, a controller with low cost for 5[kVA] 3-phase active power filter system is designed. To reduce the expense of active filter system, the presented controller is composed of digital control part using Intel 80C196KC $\mu$P and analog control part using hysteresis controller for current control. Characteristic analysis of designed controller for active filter system is performed by computer simulation and compensating characteristics of the designed controller are verified by experiment.tegy can apply to the vector control, leading to better output torque capability in the ac motor drive system. This strategy is that in the overmodulation range, the d-axis output current is given a priority to regulate the flux well, instead the q-axis output curent is sacrificed. Therefore, the vector control even in the overmodulation PWM operation can be achieved well. For this purpose, the d-axis output voltage of a current controller to control the flux is conserved. the q-axis output voltage to control the torque is controlled to place the reference voltage vector on the hexagon boundary in case of the overmodulation. The validity of the proposed overall scheme is confirmed by simulation and experiments for a 22[kW] induction motor drive system.

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.