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Abstract : Ships need to ensure safety during their navigation, which makes route determination highly important. It must be
accompanied by a route following controller that can accurately follow the route. This study proposes a method for automatically generating
the ship route based on deep reinforcement learning algorithm and following it using a route following controller. To generate a ship
route, under keel clearance was applied to secure the ship's safety and navigation chart information was used to apply ship navigation
related regulations. For the experiment, a target ship with a draft of 8.23 m was designated. The target route in this study was to depart
from Busan port and arrive at the pilot boarding place of the Ulsan port. As a route following controller, a velocity type fuzzy PID
controller that could compensate for the limitation of a linear controller was applied. As a result of using the deep Q network, a route
with a total distance of 62.22 km and 81 waypoints was generated. To simplify the route, the Douglas-Peucker algorithm was introduced
to reduce the total distance to 55.67 m and the number of way points to 3. After that, an experiment was conducted to follow the path
generated by the target ship. Experiment results revealed that the velocity type fuzzy PID controller had less overshoot and fast settling
time. In addition, it had the advantage of reducing the energy loss of the ship because the change in rudder angle was smooth. This study
can be used as a basic study of route automatic generation. It suggests a method of combining ship route generation with the route
following control.
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1. Introduction

Generally, a ship's route is planned during the voyage in

such a way that it ensures the stability of the ship against

sinking and stranding while minimizing voyage time and

fuel consumption (Ozturk et al, 2022; Orsic et al, 2016; Roh,

2013). Previously, navigators with specialized knowledge

determined the route by hand; however the development of

autonomous navigation technology (Kim et al, 2019),

automation of route generation has become necessary.

Although most of studies from a route planning

perspective have been limited to experimenting with short

distances, this study focuses on port-to-port. Herein, under

keel clearance (UKC) and navigation chart information were

applied to ensure ship safety and compliance with

navigation regulations, and reinforcement learning-based

deep Q-Network (DQN) algorithm was applied to generate

the route. Existing studies related to route planning use

various path planning algorithms such as the Dijkstra

algorithm, and the A* algorithm which are traditional path

planning algorithms. Novac et al. (2020) proposed a study

that can automatically generate a ship route using the

Dijkstra algorithm, but targeted a short route that did not

consider various factors such as water depth and navigation

rules that are considered when planning an actual route. In

the study of Lee et al. (2022a), based on the automatic

identification system data, the Dijkstra algorithm and the

A* algorithm were used to automatically generate the

vessel's passage plan. However, these traditional algorithms

have disadvantages in that these algorithms can provide

limited possibilities for complex cases, have low path

smoothness, excessive orthogonal rotation, and reduce the

effectiveness of the algorithm as the map scale expands.

Unlike the Dijkstra,   algorithm, which simply finds the

shortest distance (Lie et al, 2019; Wang et al, 2019), DQN

has the advantage of generating routes, satisfying sea

conditions and navigation regulations through rewards.

With these advantages, reinforcement learning-based DQN

is being studied as one of the powerful methods for

generating ship routes. Chen et al. (2019) proposed a ship
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path generation method based on Q-learning to achieve

autonomous navigation of ships without relying on

experience. And, Guo et al. (2021) compared the BUG2

algorithm, the artificial potential field algorithm, the A*

algorithm, and the DQN algorithm, and DQN was derived

as the algorithm with the best performance for generating

ship routes. Therefore, this study adopted DQN as an

algorithm for route generation.

Meanwhile, the ship's optimal route must be accurately

followed after it has been determined. To follow a route

accurately, an autopilot controller is attached to the ship to

control the ship (Roland, 1992). The autopilot controller

should have accurate and fast capabilities of alter course

and should not produce an overshoot for large changes in

heading angle. It should also be able to prevent rough

changes in steering angle to reduce unnecessary energy

losses. A widely applied autopilot controller in the past has

been the linear Proportional-Derivative (PD) controller,

which has a simple structure and is easy to design(Kim et

al, 2009). Despite these advantages, linear PD controllers

can only be applied to single input-output systems, and it

is difficult to obtain satisfactory performance when applied

to systems with strong nonlinearity.

Recently, with the development of modern control theory,

studies that apply linear controllers into multi-variable

systems or nonlinear systems. Also studies that apply fuzzy

theory are being conducted(Nam et al, 1994; Kim et al.,

2021). Fuzzy controllers can incorporate expert linguistic

information into the controller and become excellent

nonlinear controllers due to their nonlinear characteristics

(He et al, 1993).

Therefore, in this study, we propose a velocity-type

fuzzy (Proportional-Integral-Derivative) PID controller that

can overcome the shortcomings of the linear PD controller

and provide various functions that are essential to an

autopilot controller. The proposed velocity-type fuzzy PID

controller consists of a fuzzifier, a control rule, and a

defuzzifier. Moreover, it has the same control structure as

the linear PD controller but the gain of the controller is not

fixed. Besides, a velocity-type fuzzy PID controller has an

improved self-tuning ability compared to that of a liner PD

controller. The ability to self-tuning allows for the precise

and fast alter course that are essential to an autopilot

controller and allows the ship to be controlled to turn

without considerable overshoot for large changes in heading

angle. To verify the performance of the proposed autopilot

controller, simulations are conducted using the route

generated by DQN and ship models. This study can be

proposed as a basic study of route automatic generation,

and suggests a method of combining with the route

following control.

2. Dynamic ship model

Generally, a ship's equation of motion can be expressed

as 6 degree of freedom (DOF) equation of motion(Lee et al,

2004; Kim et al., 2023), and comprises the sum of rigid

body and hydrodynamic equations. The ship's 6 DOF

equation of motion is shown in Equation (1).

        (1)

It consists of a vector        , where

   are the linear velocities in three axes about the

ship's body fixed coordinate system, and    are the

angular velocities in three axes. The inertia matrix  is

represented by   as the sum of the rigid body and

hydrodynamic inertia matrices, and Coriolis and centripetal

force matrix  is represented by   as the

sum of the rigid body and hydrodynamic Coriolis and

centripetal force matrices. The damping matrix   is

 , which is the sum of the linear damping matrix

and the nonlinear damping matrix.  is the term

associated with the restoring force, and  is the force and

moment term, which includes the thrust and rudder to

control the ship.

Meanwhile, since most ships travel at sea level, the ship

can be assumed to have a 3 DOF equation of motion with

translational motion about the   axes and rotational

motion about  axis. To derive the 3 DOF equation of

motion, the following conditions must be satisfied.

1) The roll, pitch, and heave components of the ship can be

ignored

2) The origin of the ship's body fixed coordinate system is

located on the ship's centerline

3) The ship is symmetrical from side to side

Under these conditions, the ship's 3 DOF equation of

motion can be expressed as a combination of a forward

speed model and steering model.
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2.1 Ship's 3 DOF equation of motion

The forward speed model is given by Equation (2)(Kim

et al, 2018).


 (2)

Here,  and  are the mass and forward speed of the

ship, respectively, and 
and are the added mass and

drag coefficient for the surge direction of the ship,

respectively.  and  represent the propeller reduction

factor and propeller thrust. And the steering model of the

ship is represented by Equation (3)(Davidson, 1946).


     (3)

Here, it is defined as a vector    ,  is the ship's

rudder angle as a control input. The inertia matrix , the

sum of the Coriolis and centripetal force matrix and

damping matrix , and the input matrix  can be

expressed as Equation (4)

 



 







 

 



 


 

 

 



 






(4)

Here,  is the  axis coordinate of the ship's center of

gravity and  is the moment of inertia about  axis.


 

  
   are the hydrodynamic coefficients

for sway, yaw. From the above equations, the ship's 3

DOF equation of motion is derived.

In order to analyze a moving ship based on the ship's

body fixed coordinate system, the body fixed coordinate

system must be converted to the earth fixed coordinate

system. To convert the earth fixed coordinate system, it

can be obtained by taking a transform matrix for the ship's

speed and angular, and the transform matrix is as shown in

Equation (5).
























cos sin 

sin cos 
  












(5)

Here,   and  are the positions of the ships along the

 axes and  is the ship's heading angle.

2.2 Specifications of the ship

The specifications of the target ship of this study are

shown in Table 1.

Table 1 Specifications of a target ship

Parameter length/volume

 171.8

 160.93

 8.23

 23.17

∇ 18541

Here,  is the ship length,  is length between

perpendiculars,  is draft,  is maximum beam and ∇ is

displacement.

3. Design of the route following controller

In this study, a velocity-type fuzzy PID controller was

used as a route following controller. The structure of the

velocity-type fuzzy PID controllers shown in Fig. 1 (Kim et

al, 2000).

Fig. 1 Structure of the velocity-type fuzzy PID controller

Generally, a velocity-type fuzzy PID controller is a

controller that takes an error signal and the rate of change

of the error as inputs and applies fuzzy rules and inference

in real time to determine the control incremental.

Fig. 1 is the structure of the velocity-type fuzzy PID

controller, as proposed in this study. The velocity-type

fuzzy PID controller is a controller that uses the heading

angle error  at the current sampling time , the

velocity   of  , and the acceleration  of

  as inputs, and determines the control output through

fuzzy rules and inference in real time. The control output is
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the control increment  of the rudder that controls the

actual ships. At this point,  is added to the rudder

angle  generated at the previous sampling time,

resulting in the final rudder angle  are generated as

the ship's control input.   and  are the

input scale parameters for normalizing the three inputs and

 is the scale parameter for the fuzzy output.

3.1 Fuzzification algorithm

Fig. 2 Fuzzification algorithms; (a) input fuzzification

algorithm; (b) output fuzzification algorithm for

fuzzy control block 1; (c) output fuzzification

algorithm for fuzzy control block 2

Fig. 2(a) shows the membership function of a fuzzy set

defined in the scaled input variable space. 
 has two

members: Error Positive (EP) and Error Negative (EN); 


has two members: Rate Positive (RP) and Rate Negative

(RN); and 
 has two members: Acceleration Positive (AP)

and Acceleration Negative (AN). The output  for

fuzzy control block 1 has three members corresponding to

Output Positive (OP), Output Zero (OZ), and Output

Negative (ON), as shown in Fig. 2(b). Moreover, the output

 for fuzzy control block 2 has two members

corresponding to the Output Positive Middle (OPM) and

Output Negative Middle (ONM), as shown in Fig. 2(c).

3.2 Fuzzy control rules

The fuzzy control rules are generated based on the

professional knowledge and experience of the expert and

are shown in Table 2 (used in this study).

Fuzzy control block 1

   
   and 

     

   
   and 

     

   
   and 

     

   
   and 

     

Fuzzy control block 2

   
   and 

     

   
   and 

     

   
   and 

     

   
   and 

     

Table 2 Fuzzy control rule

In the control rules  ∼ , for fuzzy control

block 1 and in the control rules  ∼ , for fuzzy

control block 2, Zahdeh's AND logic is applied, which

performs a MIN operation to find the fitness of the latter

for two conditions of the former.

3.3 Defuzzification algorithms and control

increment

The defuzzification algorithm used in this study is the

center of gravity method(Kwak et al, 2018), and the outputs

 and  of the fuzzy control blocks 1 and 2

through defuzzification are summed. Furthermore, the

output scale parameter  is multiplied to finally

generate the control increment  . Organizing 

according to the fuzzy control rules can result in the

formation of a very simple PID, as shown in Equation (6).

    (6)

Here, the integral, proportional and derivative coefficients

 ,  and  are as shown in Equation (7).

  ××

  ××

  ××

(7)

4. Route generation of the ship

In this study, DQN algorithm based on reinforcement

learning was applied to generate the ship's route.

Reinforcement learning is a method in which an agent

learns to maximize its reward through interaction with its

environment. Since we are aiming to generate a route for a
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ship, the ship will be the agent, and the environment will

need the information important for generating the route.

4.1 Deep Q-Netwrok algorithm

Fig. 3 shows the structure of the environment and the

DQN algorithm to generate the ship's route.

Fig. 3 The data reflected in the environment for route

generation and the structure of the Deep Q-Network

Since this study aims to generate routes for ships, it is

important to create an environment enabling the ships to

find their route. Hence depth information, UKC and sea

state information are incorporated into the environment to

ensure the safety of ships and apply regulations for

navigation.

DQN is an evolution of Q-learning that adds a neural

network and replay buffer to Q-learning (Logan et al,

2021). Q-learning has the disadvantage that it is difficult to

apply in a complex environment because Q-function is

found using the Q-table corresponding to each state when

the number of states is very large. And the correlation

between the current state and the next state is very high,

so agent tends to learn only as agent learned. However,

since DQN has the advantage of being able to be applied in

complex environments as it uses a Q-network to

approximate the Q-table, it can reduce correlation because

it stores and uses past information through a replay buffer.

As shown in Fig. 3, the DQN will take the optimal action

 in the current state  through the optimal policy

determined by the Q-network, and the agent will receive

the next state 
′ and reward ′ in the environment. At

this time, past information   
′ 

′ is stored in the

replay buffer, and Q-network is continuously updated

based on the stored information. The neural network in

DQN is oriented towards minimizing the loss function,

which is given by Equation (8).

  
′max

′ 
′    

 (8)

Here,  is the loss function,  is the parameters of

the Q-network, and  is the a parameters of the target

network. Target network is a neural network with the

same parameter values as the Q-network. The Q-network

does not learn with a clear goal because the neural network

is constantly updated during the coursed of finding the

optimal behavior. To solve this problem, we keep the

parameter values of the target network fixed and train in

the desired target direction and then copy the updated

parameters of  back to  for training.

Meanwhile, the state defined as the coordinates

corresponding to current agent's location, and a total of 8

action spaces (↑, ↓, ←, →, ↖ , ↗, ↘ , ↙ ) that can act

in the current state are defined.

4.2 Douglas-Peucker algorithm

The DQN algorithm essentially generates the route from

grid-based pixels. This creates a lot of unnecessary way

points and also has the disadvantage of making the route

longer (Lee et al., 2022a). To compensate for this, we need

to introduce the Douglas-Peucker (DP) algorithm, which

simplifies the route and eliminates unnecessary way points.

The concept of the DP algorithm is illustrated in Fig. 4

(Zhao et al, 2018).

First, find a straight line connecting the start and end

points on the initial route, then find the point with the

greatest distance from the straight line. If the distance is

greater than the threshold distance (b), keep the farthest

point. Repeating the same method for every point on the

initial route can simplify the route, as shown in the red line

in Fig. 4.
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Fig. 4 Concept of the Douglas-Peucker algorithm

4.3 Constructing an experimental environment

In this study, we aimed to generated a route from Busan

port to the pilot boarding place of the Ulsan port. The

longitude and latitude values of the target area are

(∘∼ ∘) and (∘∼ ∘), respectively.

To ensure the safety of the ships, in this study, the UKC

was selected to be 11 based on reference(Lee et al, 2019),

and GEBCO's bathymetric data was used to reflect the sea

depth information. GEBCO's bathymetric data consist of

400m × 400m per pixel, and if the data is greater than 0m,

it is selected as an island or land, and if it is less than 0m,

it is selected as a sea. However, by applying the UKC of

the ship, the area deeper than 11m was selected as a

navigable area, and the area shallower than 11m was

selected as an non-navigable area.

Navigation chart information was used to ensure that

ships met navigation regulations. The navigations chart

information includes traffic separation scheme (TSS), pilot

boarding place, and restricted areas (Lee et al., 2022b). TSS

is guideline to protect the ship's entry and exit direction for

the safety of the ship and reflected restricted areas to

ensure that the route does not go too close to land.

The environment built to generate the ship's route with

this information is shown in Fig. 5.

Fig. 5 Constructed experimental environment to generate

the route

Here, the gray squares are islands and land; the red

squares are depth restrictions based on the ship’s UKC; and

the blue squares are restrictions to prevent the ship’s

course from getting too close to land. In addition, the

orange squares are the passage separation boulevard,

through which ships entering Busan Port must pass.

Therefore, the above mentioned four circled areas

correspond to non-navigable areas that ships should not

pass through. However, white squares with water depths

greater than 11 meters or green squares represented by

TSS(A) are designated as navigable areas for ships to

navigate.

4.4 Simulation on the route generation

The DQN parameter values and reward conditions for

generating ship route in this study are shown in Table 3.

Parameter values

-greedy 0.2

discount factor 0.9

learning rate 0.02

Replay memory 2000

Replay batch 64

Activation function RELU

Rewards

Land and islands End learning

Non-Navigable Areas -1

Sea Depth deeper than 11m 0

TSS (A) 1

Ulsan Port Pilot boarding place 10

Table 3 Parameter and reward values
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Table 3 shows the DQN parameters and reward

conditions used in our experiments. To give the agent

enough learning experience, we set -greedy to 0.2, the

learning rate to 0.002, and the discount factor to 0.9. The

discount factor is a value that determines how much of a

future reward will be received at present. Then the replay

memory and batch are each set to 2000 and 64,

respectively. The activation function of the DQN neural

network used RELU.

As the agent explored the area, if it found itself on land

or an island, it stopped training immediately to reduce

training time, and if it found in non-navigable area, and

area where a path should not exist, it was given a penalty

of -1. If agent located in the TSS(A) are, which must be

passed through when leaving Busan port, 1 was given as a

reward, and 10 was given as a reward if agent located at

the destination, Ulsan port pilot boarding place.

Fig. 6 Reward change per episode

Fig. 6 is a simulation result showing the reward change

taken by the agent for each episode. During about 4000

episodes, it can be confirmed that the agent sufficiently

experiences penalty and reward. After 4000 episodes, the

reward value converged to about 16 and the learning

progressed sufficiently. The training time was 52 minutes

45 seconds.

The generated route under these conditions are shown in

Fig. 7. The black squares are the route generated by the

DQN. As expected, since the route is generated pixel by

pixel, a lot of unnecessary way points can be observed, and

the route do not exactly follow a straight line. To resolve

these issues, we applied the DP algorithm the results are

shown in the blue solid line. After applying the DP

algorithm, we can see that the number of way points is

considerably reduced to three, and the distance of the route

is reduced compared to that in the DQN. The route initially

generated using DQN had the total distance of 66.22 km

and 81 way points, and final route generated by

Douglas-Peucker algorithm had total of 55.67 km and 3

way points.

Since reinforcement learning proceeds in a direction that

maximizes reward, we can see that the rewarding region,

TSS(A), is always traversed and no route are generated in

the non-navigable areas.

Fig. 7 Route generated by DQN and simplified route by DP

algorithm

5. Route following control

The performance of the velocity-type fuzzy PID

controller proposed in this study is analyzed and compared

with that of the widely used PD controller on the route

generated in Chapter 4. The proportional and derivative

gains of the PD controller were optimized to 1 and 70,

respectively. For both controller, the forward velocity of the

ship was set to  , and the maximum angle of the

rudder was limited to ±∘to secure the stability of the

ship.

The longitude and latitude values of the location of the

way points are (∘ ∘), (∘ ∘),

(∘ ∘), and (∘ ∘). The tracking

heading angle between way points for route following

control are ∘, ∘, ∘, and ∘. The

reference heading angle used as a control input to follow

the route was the angle between the current ship's position

and the next way point's position. The reference heading
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angle can be expressed as in Equation (9).

    (9)

Here,  is the reference heading angle.  and 

are the position of the next way points, respectively and

 and  are the current ship's position, respectively.

Fig. 8 shows the result of the ship's route following

control using a PD and a fuzzy PID controller. We can see

that both controller maintain the route accurately in the big

picture; however, the PD controller has its limitations when

it comes to alter course. The limitations of the PD

controller are addressed in Fig. 10 and Fig. 11.

Fig. 8 Route following using PD and fuzzy PID controller

Fig. 9 Velocities (u) and (v) using PD and fuzzy PID controller

Fig. 9 shows the forward and lateral velocities of the

ship using PD and fuzzy PID controller. Since both

controllers set the ship's forward velocity to 8m/s, it

remains constant at 8m/s. Furthermore, the lateral velocity

does not occur in any of the sections except for alter

course. There was no significant difference in the velocities

of the ships between the two controller.

However, there is a big difference in the ship's heading

angle. An illustration of the ship's heading angle using both

controllers is shown in Fig. 10. With the PD controller, a

lot of overshoot can be observed in the alter course section,

and it takes a significant amount of time for the ship to

stabilized.

Fig. 10 Heading angle using PD and fuzzy PID controller

Conversely, when using a fuzzy PID controller, almost no

overshoot is observed regardless of the size of the angle of

the alter course, and the settling time is fast, allowing for

fast alter course. If there is a lot of overshoot as in the

case of the PD controller the ship could deviate from its set

route.

Fig. 11 Rudder angles using PD and fuzzy PID controller
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Fig. 11 is the simulation result of the rudder angle used

to control a real ship. The rudder angle simulation results

also confirm that the fuzzy PID controller performs well. If

the rudder changes roughly, for example, with a PD

controller, this will also be factor in increasing the amount

of fuel that is used to control the rudder. In contrast, fuzzy

PID controllers can smoothly change the rudder angle,

which can further reduce the energy loss of the ship. The

reason why velocity-type fuzzy PID controller perform so

well is that they can optimally vary the gain value in real

time according to the fuzzy control rules. In addition, since

the control output is expressed in incremental form, the

effect of overshoot can be greatly attenuated.

6. Conclusion

In this study, we addressed the problem of determining a

ship’s route and a route following control technique that

can accurately follow the set route. This study is

meaningful in that it proposes a method of generating a

ship route using DQN and connects the route following

using a velocity fuzzy controller.

The targeted route in this study was to depart from

Busan port and arrive at the pilot boarding place of the

Ulsan port. To ensure the safety of ships, UKC values

were derived based on ship specifications to designate

non-navigable areas, and navigation chart information was

used to ensure that ship operation regulations were met.

Under these conditions, a route for the ship was

automatically generated. And through the establishment of

the experimental environment, it was confirmed that the

rewarding area could be passed and it could not pass

through the penalty areas. The route initially generated

using DQN had the total distance of 66.22 km and 81 way

points, but the final route was derived by simplifying it to

the total of 55.67 km and 3 way points using the

Douglas-Peucker algorithm.

After that, a velocity-type fuzzy PID controller was

designed and simulated using a target ship model to

accurately follow the route. The PD controller was found to

have a lot of overshoot during the alter course and took a

considerable amount of time to stabilize the ship. Linear

controllers such as PD controllers cannot change the gain

value once it has been determined. However, velocity-type

fuzzy PID controllers can schedule the gain value in real

time according to fuzzy control rules to realize optimal

control performance. Therefore, it was confirmed that the

control performance of a rudder angle controlling a real

ship is superior to that of a PD controller, enabling an

accurate and fast-changing route following control.

However, this study has the following limitations.

Reinforcement learning requires constructing an

experimental environment very similar to the real world.

Otherwise, it is very difficult to apply the algorithm in

practical situations. It is possible to generate an accurate

route based on DQN only when dynamic sea state

information is utilized through real-time sensing and data

transmission. Therefore, in the future, research that can

build an experimental environment in real-time using

dynamic sea state information is needed. In addition, it is

necessary to conduct comparative research on route

generation performance with algorithms such as the deep

deterministic policy gradient, A3C, and D* lite.
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