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REPRESENTATION OF L!-VALUED
CONTROLLER ON BESOV SPACES

JIN-MUN JEONG AND DoNG-Hwa KiM

ABSTRACT. This paper will show that the relation
(1.1) LY(0) C Co(Q) C Hyp g

f 1/p — 1/n{1 — 2/q') < 0 where p = p/(p — 1) and ¢ =
q/(g—1) where Hy g = (Wg'P, W~1P);,, . We also tend to
investigate the conutrol problems for the retarded systems with
L*{§})-valued controller in Hyp 4

1. Introduction

Let €2 be a bounded domain in R™ with smooth boundary 92.
Let A{z, D;) be an elliptic differential operator of second order as
follows.

n

A5, D) = - 3 %{am(x)@%) + 30 el

ny=1

where {a, ,(2)} is a positive definite symmetric matrix for cach z €
0, b, € CHO) and ¢ € L=(Q)

If we put that Agu = — A(z, D, )u then it is known that Ay gener-
ates an analytic semigroup in W~1?(Q) where W~12(Q) is the dual
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space of W, (Q),p = p/(p—1) as is seen in [5]. Therefore, from the
interpolation theory it is easily seen that the operator Ay generates
an analytic semigroup in H, , = (Wo1 P W LP), /q,q- 1n the section
4, we will show that the relation

(1.1) LY Q) C Co(R) C Hpq

if1/p' —1/n(1 —2/¢) <0 where p =p/(p — 1) and ¢ = ¢/(g - 1).
Hence we intend to investigate the control problem for the following
retarded system with L' (§2)-valued controller:

d

12 o

u{t) =Aou(t) + Aju(t — h)

0
+ / a(s)Asu(t + s)ds + Pow(t), t € (0,7T]

—h
(1.3)  u(0)=¢° u(s)=g'(s) s € [—h,0),

in the space Hy,. Here, Au = —A,(z,Dz)u, + = 1, 2, where
A (z, D;) are second order linear differential operators with real co-

efficients. The kernel a(-) belongs to LY (—h,0) where A is a fixed
positive number and the controller ¢ is a bounded linear operator
from some Banach space U to L'(Q). The initial data g% g' are
given functions so that needed for the construction of solution semi-
group for (1.2) and (1.3) and of L*(Q})- valued controller. From the
relation (1.1) we shall deal with approximate controllability and ob-
servability for the system (1.2) and {1.3) in the space H) , choosing
p and ¢ such that 1/p —1/n{1 —2/¢) < 0.

In view of Sobolev’s embedding theorem we may also consider
L) c W-bP(Q)if 1 < p < n/(n— 1) as is seen in [5]. Hence,
we can investigate the system (1.2) and (1.3) in the space W~12(Q)
considering $ as an operator into W~1P(Q2). Furthermore, it is
known that W~1P(Q) is (-convex and the initial value problem

(1.4) £ = Agu(t)+ 1), te(0,T)

u(0) = ug
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has a unique solution » € L9(0,T; W, 'P(Q) N WHe(0, T; W—17(Q))
for any ug € Hpq and f € L0, T; W—1?(?)) (see Theorem 3.1
in {5]). Thereafter, we can apply the method of G. D. Blasio, K.
kunisch and E. Sinestrari [3] to the system (1.2} and {1.3) to show
the existence and uniqueness of the solution

ue LU0, T WP () WH(0, T; W 12(Q)) C C([0, T]; Hp o)

Since &y is a mapping into W~1#(Q?) not into H,, 4, we cannot express
the solution u(¢; 0, Pow) of system of {1.2) and (1.3) with g = 0 using
the solution semigroup S(¢). Here, the solution semigroup for the
system (1.2} and (1.3) is defined by
S(t)g = (ult; 9,0), (5 9,0))

where g = (g% ¢%) € Z,4 = Hpg x LI(—h,0; Wé’p(ﬂ)), u(t; ¢.0)
is the solution of (1.2) and (1.3) with &g = 0 and u(-, ¢,0} is the
function u(s;g9,0) = u{t + s;¢,0) defined in [—h, 0]. Therefore, we
have to define the approximate controllability and observability in
W=1P(Q}) using the fundamental solution as is seen in definition 5.1
in [5]. Here, we note that in order to existing of fundamental solution
of system (1.2) and (1.3), we must need the assumption that a(-) is
Hdlder continuous. ,

In this paper, assuming that a(-) has only to belong to LY (—#, 0},
with the aid of the relation (1.1) we can define the approximate con-
trollability and observability in Hy , without using the fundamental
solution. We define the set of attainability by

R = {'/Ot S(t — r)Pw(t)dr : w € LY0,4U), t> 0}

where dw = (Pow, ). We say that the system (1.2) and (1.3) is ap-
proximately controllable if R is dense in Z, , and the adjoint system
is observability if ¢ € Z ., ®ju(t;¢) = 0 implies ¢ = 0. where
v(t; $) is a solution the following adjoint system of (1.2} and (1.3).

(1.4)

S 0() =Agv(t) + Aju(t - h) + / a(s)Azu(t + s)ds,
—h

(1.5)  v(0)=¢°, o(s)=¢'(s), se€[-h0),
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where ¢ = (¢° ¢') € Z,; . The structural operator F' : Z; 4 —
Z;, J is defined by

0
Fg= (g% A1g'(~h — s) + / a(1) Azgt(r ~ 8)dT).
—h

We will show that if 7' is an isomorphism, then the approximate
controllability of (1.2) and (1.3) is equivalent to the observability of
(1.4) and (1.5). Finally, we remark that in the space W~1P(Q2) we
can not define the attainability set using solution semigroup S(t} and
it is said that the system (1.4) and (1.5) is observable if ¢ € Z; .+,
Siv(t; @) = 0 almost everywhere implies ¢ = 0.

2. Notations

Let €2 be a region m an n-dimensional Euclidean space R™ and
closure . C™(Q) is the set of all m-times continuously differential
functions on Q. CF*(Q2) will denote the subspace of C™(2) consisting
of these functions which have compact support in Q. W™ P(Q) is the
set of all functions f = f(z) whose derivative D*f up to degree m
in distribution sense belong to LP(2) . As usual, the norm is then
given by

1fllmp = (D 1D FIBa)?, 1<p<oo

a<m

“f”m,oo,ﬁ = g’g’é [l D%ulloo, 2,

where D°f = f. In particular, WP(Q) = LP(Q}) with the norm
- llp,e2- Let p =p/lp—1),1 < p < oco. W HP(Q) stands for

the dual space Wy'P (Q)* of WS” (Q) whose norm is denoted by
H ) H—l,p,oo-

If X is a Banach space and 1 < p < oo, LP{0,T; X) is the collec-
tion of all strongly measurable functions from (0,7) into X the p-th
powers of norms are integrable. C™([0,7]; X) will denote the set of
all m-times continuously differentiable functions from [0, T'] into X.
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If X and Y are two Banach spaces, B(X,Y) is the collection of
all bounded linear operators from X into Y, and B(X, X) is sim-
ply written as B(X). For an interpolation couple of Banach spaces
Xp and X, (X0, X1)e, and [Xp, X1]o denote the real and complex
interpolation spaces between X3 and X, respectively. Let B;iq(ﬂ)
denote the Besov space and By ,(€2) will be denote the subspace of
B; ,(§2) consisting of those functions which have compact support in

3. Preliminaries

Let € be a bounded domain in R™ with smooth boundary 912.
Consider an elliptic differential operator of second order

A, D) =— Y ai (225 () - )+Zb(a: (z)

2,7=1

where {a, ,(z)} is a positive definite symmetric matrix for each z €
(2. The operator

n

A, Ds)= =D 5~ (w( ) Za (bi(2)") + c(z)

7.3-1

is the formal adjoint of A.

For 1 < p < oo we denote the realization of .4 in LP(£2) under the
Dirichlet boundary condition by 4,

D(A,) = W2P(Q) n W P(Q),
Apu=Au  for ue€ D(Ap).

For p' = p/{p — 1), we can also define the realization A’ in e (Q)
under Dirichlet boundary condition by A;),

D(AL) = W27 () n W™ (Q),
A;,u =Au for ue D(A;,)
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It is known that —A4, and —A;J, generate analytic semigroups in

L?(Q2) and g (€2), respectively, and A; = A;,. From the result of
R. Seeley [10] (see also H. Triebel [14;p. 321}) we obtain that

[D(4,), LP ()] = Wp* ()

and hence, may consider that
D(Ap) C WyP(Q) C LP() c W™HP(Q) € D(A )"

Let (A;,)' be the adjoint of A;J. considered as a bounded linear op-

erator from D(A',) to L? (Q). Let 4 be the restriction of (4,
to Wol (€2). Then by the nterpolation theory, the operator Ais an
isomorphism from W, () to W‘l’P (€2). Similarly, we consider that
the restriction 4" of (4,) € B(L? (%), D(4,)°) to WEP (Q) is an
isomorphism from W, 4 () to W~ Ly’ (€2). Furthermore, as is seen
in proposition 3.1 in J. M. Jeong {5], it is known that Aand 4’ gen-

erate analytic semigroups in W—1P(Q) and W17 (), respectively,
and the inequality

“(;{)%SHB(W—*LP(Q)) <Cel —oo <5< o0,
holds for some constants C > 0 and vy € (0,7/2). We set

(3.1) Hpq= (Wol’p(ﬂ): W_l’p(Q))é.q?

for ¢ € (1,00) Since A is an isomorphism from WaP() onto
W-12(Q) and WyP(Q) and W—1?(Q) are (-convex spaces, it is eas-
ily seen that H, , is also {-convex. From the interpolation theory

and definitions of the operator A and the space Hp , we can see the
following results.
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ProrosiTION 3.1. The operator Aand A’ generate analytic semi-
groups in Hy o and H ., respectively.

Proof. Since —4, and — A generate analytic semigroup in LP(£))
and W—1?(Q), respectively (see Proposition 3.1 in J. M. Jeong [5]),
there exists an angle v € (0, 5) such that

(3.2) S ={X\:y<arg) < 2 — v} C p(4y) N p(4),
(3.3) 1A= Ap) His@ey < C/IAL, AEX,
(3.4) O — A)~ Mpw-1eay) < C/IAl, A€,

where p(A4,) is the resolvent set of A,. In view of (3.3)

“Ap(/\ - Ap)_lu“p,ﬂ = ”(/\ - Ap)ﬁlApu“p.Q = |’\I ”APU‘HP Q)

for any u € D(A,), we have

C

(3.5) A= 4p) HiBp(a,) < B

From (3.3) and (3.5) it follows that

C

(3.6) IO = D™ pariray < A

and, hence from (3.4), (3.6) and the definition of the space H, , we
have that

~ C
HA—A) e, ) < 5

Therefore we have shown that — A generates an analytic semigroup
in Hy 4.



140 J. M. JEONG AND D. H. KIM

PROPOSITION 3.2. There exists a constant C > 0 such that
[A*||gea, ) < Ce™™M, s e R,

where y is the constant in (3.2).

Proof. From Theorem 1 of Seeley [9] and Proposition 3.2 of J.
M. Jeong [5] there exists a constant C' > 0 such that

(3.7) I(An) || B iy < Ce™™,

(3.8) A pw-1p(ay) < Ce,

for any s € R and ¢ > 0. From (3.7) it follows

(3.9) 1(Ap) || B(D(a,yy < Ce™,

and hence, from (3.7) and (3.9) we obtain

(310) ||ZE+%SHB(W3"’(Q)) < Oe"r|8|.

Hence from (3.1), (3.8) and (3.10) we have shown that
“ZEHSHB(HP,Q) < Cel,

So the proof is complete.

Ifl < p < n/(n—1), then we see that L'(Q) ¢ W~HP(Q)
from Sobolev’s embedding theorem. Furthermore, we will show that
L*(Q) C Hp 4 in the section 4. Therefore, from Propositions 3.1 and
3.2 we can apply Theorem 3 1 and Proposition 4.1 of J. M. Jeong
[5] to the abstract Cauchy problem in the space H,,. Hence, the
following equation may be considered as an equation in both H,,
and W=1P(Q).

(3.11) %u(t) — Aou(t) + Agult — )

+ /o a{s)Aqu(t + s)ds + Pow(t), t € (0,7T]
—h

(312)  w(0) =% u(s) = g'(s) s € [~h,0),
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where Ag = —A, A,u (v = 1, 2) are the restriction Wy ?(S2) of the
following linear differential operators —.A4,{: = 1, 2) with real coefhi-
clent:

Az, D,;) = 28 au(a:) )+Zb(x—-—+c(a:)

where a! = at, € C'(Q), b, € C'(Q), ¢ € L>(Q). The kernel

o{-) belongs to Lq (—h,0) and the controller @y is a bounded linear
operator from some Banach space U to L!'(2). For g € (1,00) we set

(3.13) Zpq = Hp g x L —h,0; Wy P (Q)).
Let g = (9% ¢%) € Z,, and w € L9(0,T;U). Then as is seen in

Proposition 4.1 of J.M. Jeong [5] a solution of the equation (3.11)
and (3.12) exists and is unique for each 7' > 0, moreover, we have

llulqu(O,T,W(:"”(Q))nWI.Q(U'T)W—1 2 () = < efllg” 13:8
+ H.(}IHLQ(_)‘;,O'WJ«P(Q)) + “w“LQ[O,T.U))e

where ¢ is a constant. Thus, we can define the solution semigroup
for the system (3.11) and (3.12) as follows (3, Theorem 4.1}:

S(t) = (u(t; g, 0)1 ut(‘;g7 0))

where g = (g",¢1) € Zp > ©(t; 9,0} is a solution of (3.11}, (3.12) with
&y = 0 and w(-, g,0) is the function ue(s; g,0) = u(t+s; 9, 0) defined
in [—h,0]. It is also known that S(¢) is a Cy-semigroup m Zp .

We introduce the adjoint problem of (3 11) and (3,12):

(3.14) g}”(t) =Agv(t) + Alv(t — h)

0
+[ a(s)Asv(ts)ds, t € (0,7},

~h
(3 15) v(0) =¢°, v(s) =¢'(s), s€[~h0),
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where A% = —A’ and Al (e =1, 2) are the a,djomt operators of A,. It
is easily seen that A* € B(W,’ 2 ), w- Lp () fore =0, 1, 2 and
hence (3.14) and (3.15) is an equation in both H/ + and W~ e
We can also define the solution semigroup Sr{t) of (3 14) and (3. 15)
by
Sr(t)e = (v(t; ¢), v, 9))
for ¢ = (¢°,¢') € Z; ,+, where u(t; @) is the solution of (3.14) and
(3.15).
The structural operator F is defined by
Fg = (IFg]’,[Fg]")
[Fg]° =4,
0
(Fal'(s) = g (= 9)+ [ a(r)Aag' (= s)dr
~h
for g = (g% g') € Z, 4. It is easy to see that F € B(Zp gy Zy ), F*
€ B(Zy o, Zg 4)- As in [5,7] we have that
(3.16) FS() = SE(OF*, F*Sp(t) = S*(t)F*.

4. Representation of H,, into Besov spaces

Let Yy and Y) be two Banach spaces contained in a Banach space
Y such that the identity mapping of Y, (z = 0, 1) in Y is continuous
and norms will be denoted by || - ||,. The algebraic sum ¥, + Y] of
Yo and Y is the space of all elements ¢ € Y of the form ¢ = ag + a4,
ap € Yy and a1 € ;. The intersection Yp NY; and the sum Yy + Y
are Banach spaces with the norms

llallyony, = max {{lallo, |le/}1}

and
llallvo+v, = inf {llacllo +llerfl1}, a=ao+a1, e €Y,

respectively.
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DEFINITION (LIoNs-PEETRE) 4.1. We say an intermediate space
Y of Yy and Y; belongs to
(i} the class K,4(Yo,Y1), 0 <8 < 1, if for any a € Yy N Y,

llally < cliallg™llall}

where ¢ is a constant;
(ii) the class K¢(Yp,Y1), 0< @ < 1, ifforanya € Y and ¢t > 0
there exist a, € Y, (1 = 1, 2) such that a = ag + a1 and

laolls < ct™lally, |laills < ct*Cllally

where ¢ is a constant;
(iii) the class Kg(Ag, A1), 0 < 8 < 1, if the space Y belongs to
both &(Yo, Y1) and T{_G(YO, Yl).

Here, we note that by replacing ¢ with t~* the condition in (ii)
rewrite as follows:

laollo < et®llally,  Haalh < et Hially

The following result is obtained from Lions-Peetre theorem 2.3 in [6].

ProproOsITION 4 1. For 0 < 8y < 0 < 07 < 1, if the spaces X
and X, belong to the space Kp,(Yp, Y1) and the space Ky, (Yp, Y1),
respectively, then

(X07 Xl) 9;_9?0 » = (lfo, }/1)9,17-

In particular, if the space X; belongs to Kg, (Ys,Y1) then for 0 <
8 <t <1

{Y(_}, Xl)gl—,p - (th YI)G,P‘
If the space X belongs to Kg,(Yp, Y1), then 0 < 8y <8 <1

(XO" Yl)?_:g_g’p == (YI]’ Yl)e,p'

Let A = —A(z,D;) as in section 3. Then the operator 4 is an
isomorphism from W, ?(Q) to W-LP(Q).
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LEMMA 4.1. For any t > 0, there exists a constant C such that

(4.1) 1t + A) " pw-1e(),L2 () < CE 2,
and
(42) H(t + A)'—IHB(LP(Q),WDI"’(Q}) < (jt‘-‘;7 .

Proof. For ¢t > 0 since (¢ + A;),)‘1 is an isomorphism from
23 () to D(A;),), the resolvent ((t + A;,)_l)' is an isomorphism
from D(A;, )* onto L¥(Q). It is not difficult to see that

((t+A)™ = (t+(4,))!
and o,
t+(A,) ) w1y = (E+4)7"

Therefore, we have
(4.3) 11t + A)‘IHB(D(A;, e np@y SC

where C' is a constant. Combining (3.3) and (4.3) we obtain the
inequality of (4.1). The proof of (4.2) is similar.

THEOREM 4.1. For 1 < p < oo, the space LT () belongs to the
class K ;o(Wy P (Q), W12 ().

Proof. For any u € WyP(Q) and ¢ > 0, from Lemma 4.1 and
u=Alt+ A u+tt+ A u=(t+ A) T Au+t(t + A) L,
it follows
lullp,o <t + A) " Hlismw-1o).e @)l AUl| -1 00

+t{](t + A)ﬁIHB(W—lvP(Q),LP(Q))HHH—-LP,Q
—1 L
SO 2 |ul|y p,0 + Ct2 |yl -1 pa.
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By choosing ¢ > 0 such that t=Y/2|)ul|1p 0 = t1/?||ul|-1,5,0, We ob-
tain

lfullp. < Cllullf p allullZ; 5 o
Therefore, L¥(2) belongs to the class K_Uz(Wg’p(Q),W*LP(Q)).

Put up = t(t + A)"'u and vy = A(t + A)~'u for any u € LP(Q).
Then 4 = ug + uy, and we obtain that

_ 1
luoll1,p.0 < EI(E+ A) Iu”B(Lﬁ(Q),WJ“’(Q))”u”p,ﬂ < CtHullp,a
]l 190 < CllE+ A ullipo < CtEjullpa.

Therefore LT (£2) belongs to the class K 5(Wy ' (), W~1?(£2)), and
hence, it belongs to KI/Q(WOI’P(Q), W -Lr(Q))).

THEOREM 4.2. If1 — 20— 1/p # 0 and 20 — 2+ 1/p # 0 for
0<8<landl <p, g <o, then

By R 6< %(1 - 1),
(We? (@, W 7 (@)sg = . .4
—{1— ).
B, () g > 2( p)
where B)-2%(Q) = {u € B} () : ulag = 0}. In particular, we
obtain that
(WoP (), W™HP(2)) 3 4 = By o().
Proof. Let 0 < 6 < 1/2. Then from Proposition 4.1 we obtain
that for any 0 < 8 < 1/2

(WoP (), W HP(Q))g g = (W, P(Q), LP(Q2))26,6
= (LP(Q), Wy P (D)) 1-26,4

Therefore, in view of the result of Grisvard theorem in Triebel [14
p. 321],

B () 1—29>%,

(Wo (), W 1P(Q))g,q = .
B)LPOQ)  1-20< -
P



146 J. M. JEONG AND D H. KIM

Let 1/2 < 6 < 1. Then from Proposition 4.1 it follows
(Wo P (0, WP (2))o, = (LP(Q), WP (2))20-1,4
= (L7 (9, W " (D)ae-1,¢)"

where p = p/(p~1). In view of Grisvard theorem if 20—1—1/p #0
then

1
B¥-Y Q)  20-1> =,
P e p

(rr (Q)aWDI,p (©2))e,q = 1
BNy 20-1< .
».,q p
From Theorem 4.8.2 in H. Triebel [14; p. 332|, we obtain that
(B2 ) = By ()
if 20 —1—1/p #0. Since 20—1-—-1/1)' #0ie 2024 1p#0, if
1/2 <8 <1and 20— 2+ 1/p# 0 then
(Wo (), W™HP(2)a, = By ().

Consequently, we obtain that

~— 3 1
(o ( @, W (@Q)ge = Bp o), i 0<0< -

and

(WP (@), WP (@) e, = B;2Q)  if 0<f<i- %.

Hence, if 0 < < min{1/p,1 - 1/p}

(W (), WP (),
= (W " (@), W=HP(Q)) e o, (W P(2), WHP(2)) 1ss )
= (B (Q), Byo()1, = By ().

»q

IS o

The last equality is obtained from Theorem 1 of section 4.3.1 in H.
Treibel [14; p. 317]. Hence the proof is complete.
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THEOREM 4.3. Let 1 < p, ¢ < oo.
(i) If2/¢g— 2+ 1/p # 0 then

—2 1 1 1
Bpg® (@) if =< z(1-=),

H, , = g 2 p
B e o Lslaol
if —->-{1--).

P9 q 2 p

(if) If 7 < 1/n(1 —2/q) then
Hy o C Co(Q) € L.

Proof. The relation (i) follows directly from Theorem 4.2. Let
o < 1/n(1- 2/q’). Then from (i)

Hp’ 4= (WJ,P (Q), W —Lp (Q));‘r:q' = Bp',q' (Q)

and from Sobolev-Besov’s and Sobolev’s embedding theorems we ob-

tain that
- 1~ % -
Bp, q", () C Wp, 7 C Co(d)

Hence, the first inclusion in (ii) follows.

5. Control problem for L!(2)-valued controller

As is seen in section 4, if 1/p' —1/n{1—2/q ) < 0 then we obtained
that

H,,C Co(Q) C L*=(Q).
Thus, since

_ * O\ * 1
Hpq=H} 2 Co(S)" D LHQ)

we consider @, as an operator in B(U, Hy 4). Hence it is possible to
investigate the control problem for (3.11) and (3.12) in Hp ,. In what
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follows in this section we fix p and ¢ so that 1/p —1/n(1— 2/q) < 0.
Then it immediately implies that 1 < p < n/(n — 1). Let A be the
infinitesimal generator of S(¢) as in section 3. Then the equation
(3.11) and (3.12) can be transformed into an abstract equation as
follows

z(t) = Az(t) + Pw(t),
2(0) =g

where g = (g% ¢') € Z,, and the controller operator is defined
dw = (Pow,0). In this case for the solution u of (3.11) and (3.12)the
equation satisfied by (u(t),u:(-)) is an equation in Z, 4 since @y is
an operator into Hp, 4. Since the dual @7 of @, is the operator from
L (2) into U*, the operator &} may be considered as an operator
from H  into U*, Hence with the aid of Theorem 4.3 we remarked
that the condition that $5¢ = 0 almost everywhere can be rewrite
to the fact that @3¢ = 0 for ¢ € Z, ,. We define the attainable set
by

R= {/Ot S(t — T)@w(r)dr :w € LI(0,¢;U), t >0}

DEFINITION 5.1. (1) The system (3.11), (3.12) is approximately
controllable if R = Z, 4, where R is the closure of R in Z, ,

(2) The system (3.14), (3.15) is observable if for ¢ € Z, .,
&% [ST(1)¢l° = 0 implies ¢ = 0.

THEOREM 5.1. Let the structural operator F' is an isomorphism.

Then the system (3.11) and (3.12) is approximately controllable if
and only if the system (3.14) and (3.15) is observable.

Proof. Let the system (3.11) and {3.12) is approximately con-
trollabe. Then for f € Z

(f,fo St~ 7)Pw(r)dr) =0

for w € L9(0,t;U) and £ > 0 implies f = 0. By duality theorem it

is equivalent to the fact that for any f € Z; |, #*5*(¢)f = 0 implies
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f = 0. Since the operator F* is an isomorphism by assumption,
there exists ¢ € Z, .+ such that f = F*¢. From (3.16) we obtain
that

B5(S*(6) f1" = B[F ST (t)9]° = Bo{ST(t)6]°.

Hence, the system (3.11) and (3.12) is approximately controliable iff
for any ¢ € Z, ., $5[Sr(t)¢]° = O implies ¢ = 0. Therefore, the
statement is equivalent that the system (3.14) and (3.14) is observ-
able.

Remark. When we deal with the control problem of (3.11)
and (3.12) in negative space W—1P(Q), we needed a assumption
that the kernel a(-) is Holder continuous for using of the properties of
fundamental solution since @y is not operator into Hp, 4. If we assume
that a(-) s Holder continuous then the fundamental solution of (3.11)
and (3.12) exists (see in {13]). By fixing p, g so that 1 <p < n/(n-1)
and 1/p < 1/n{1 — 1/q), we can obtain the Theorem 5.1 using
the solution semigroup without requirement of fundamental solution
of (3.11) and (3.12). Hence, the kernel a(-) necd not be Holder

continuous but has only to belong to qu(—h, 0) for wellposedness
and regularity for equation (3.11) and (3.12).
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