East Asian Math. J. 19 (2003), No 1, pp 133-150

REPRESENTATION OF L¹-VALUED CONTROLLER ON BESOV SPACES

JIN-MUN JEONG AND DONG-HWA KIM

ABSTRACT. This paper will show that the relation

(1.1)
$$L^1(\Omega) \subset C_0(\overline{\Omega}) \subset H_{p,q}$$

If 1/p' - 1/n(1 - 2/q') < 0 where p' = p/(p-1) and q' = q/(q-1) where $H_{p,q} = (W_0^{1,p}, W^{-1,p})_{1/q,q}$ We also intend to investigate the control problems for the retarded systems with $L^1(\Omega)$ -valued controller in $H_{p,q}$

1. Introduction

Let Ω be a bounded domain in \mathcal{R}^n with smooth boundary $\partial\Omega$. Let $\mathcal{A}(x, D_x)$ be an elliptic differential operator of second order as follows.

$$\mathcal{A}(x, D_x) = -\sum_{i,j=1}^n \frac{\partial}{\partial x_j} (a_{i,j}(x) \frac{\partial}{\partial x_i}) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} + c(x)$$

where $\{a_{i,j}(x)\}$ is a positive definite symmetric matrix for each $x \in \Omega$, $b_i \in C^1(\overline{\Omega})$ and $c \in L^{\infty}(\Omega)$

If we put that $A_0 u = -\mathcal{A}(x, D_x)u$ then it is known that A_0 generates an analytic semigroup in $W^{-1,p}(\Omega)$ where $W^{-1,p}(\Omega)$ is the dual

Received May 19, 2003

²⁰⁰⁰ Mathematics Subject Classification Primary 35B37, Secondary 93C20 Key words and phrases. Besop spaces, Sobolev's embedding theorem, retarded system, approximate controllability, observability

space of $W_0^{1,p'}(\Omega)$, p' = p/(p-1) as is seen in [5]. Therefore, from the interpolation theory it is easily seen that the operator A_0 generates an analytic semigroup in $H_{p,q} = (W_0^{1,p}, W^{-1,p})_{1/q,q}$. In the section 4, we will show that the relation

(1.1)
$$L^1(\Omega) \subset C_0(\overline{\Omega}) \subset H_{p,q}$$

if 1/p' - 1/n(1-2/q') < 0 where p' = p/(p-1) and q' = q/(q-1). Hence we intend to investigate the control problem for the following retarded system with $L^1(\Omega)$ -valued controller:

(1.2)
$$\frac{d}{dt}u(t) = A_0u(t) + A_1u(t-h) + \int_{-h}^{0} a(s)A_2u(t+s)ds + \Phi_0w(t), \quad t \in (0,T]$$

(1.3) $u(0) = g^0, \quad u(s) = g^1(s) \qquad s \in [-h,0),$

in the space $H_{p,q}$. Here, $A_{\iota}u = -\mathcal{A}_{\iota}(x, D_x)u$, $\iota = 1, 2$, where $\mathcal{A}_{\iota}(x, D_x)$ are second order linear differential operators with real coefficients. The kernel $a(\cdot)$ belongs to $L^{q'}(-h, 0)$ where h is a fixed positive number and the controller Φ_0 is a bounded linear operator from some Banach space U to $L^1(\Omega)$. The initial data g^0, g^1 are given functions so that needed for the construction of solution semigroup for (1.2) and (1.3) and of $L^1(\Omega)$ - valued controller. From the relation (1.1) we shall deal with approximate controllability and observability for the system (1.2) and (1.3) in the space $H_{p,q}$ choosing p and q such that 1/p' - 1/n(1-2/q') < 0.

In view of Sobolev's embedding theorem we may also consider $L^{1}(\Omega) \subset W^{-1,p}(\Omega)$ if $1 as is seen in [5]. Hence, we can investigate the system (1.2) and (1.3) in the space <math>W^{-1,p}(\Omega)$ considering Φ_{0} as an operator into $W^{-1,p}(\Omega)$. Furthermore, it is known that $W^{-1,p}(\Omega)$ is ζ -convex and the initial value problem

(1.4)
$$\frac{d}{dt} = A_0 u(t) + f(t), \quad t \in (0,T],$$
$$u(0) = u_0$$

has a unique solution $u \in L^q(0,T; W_0^{1,p}(\Omega) \cap W^{1,q}(0,T; W^{-1,p}(\Omega))$ for any $u_0 \in H_{p,q}$ and $f \in L^q(0,T; W^{-1,p}(\Omega))$ (see Theorem 3.1 in [5]). Thereafter, we can apply the method of G. D. Blasio, K. kunisch and E. Sinestrari [3] to the system (1.2) and (1.3) to show the existence and uniqueness of the solution

$$u \in L^{q}(0,T; W^{1,p}_{0}(\Omega) \cap W^{1,q}(0,T; W^{-1,p}(\Omega)) \subset C([0,T]; H_{p,q})$$

Since Φ_0 is a mapping into $W^{-1,p}(\Omega)$ not into $H_{p,q}$, we cannot express the solution $u(t; 0, \Phi_0 w)$ of system of (1.2) and (1.3) with g = 0 using the solution semigroup S(t). Here, the solution semigroup for the system (1.2) and (1.3) is defined by

$$S(t)g = (u(t;g,0), u_t(\cdot;g,0))$$

where $g = (g^0, g^1) \in Z_{p,q} = H_{p,q} \times L^q(-h, 0; W_0^{1,p}(\Omega)), u(t; g, 0)$ is the solution of (1.2) and (1.3) with $\Phi_0 = 0$ and $u_t(\cdot, g, 0)$ is the function $u_t(s; g, 0) = u(t + s; g, 0)$ defined in [-h, 0]. Therefore, we have to define the approximate controllability and observability in $W^{-1,p}(\Omega)$ using the fundamental solution as is seen in definition 5.1 in [5]. Here, we note that in order to existing of fundamental solution of system (1.2) and (1.3), we must need the assumption that $a(\cdot)$ is Hölder continuous.

In this paper, assuming that $a(\cdot)$ has only to belong to $L^{q'}(-h, 0)$, with the aid of the relation (1.1) we can define the approximate controllability and observability in $H_{p,q}$ without using the fundamental solution. We define the set of attainability by

$$R = \{\int_0^t S(t-\tau) \Phi w(t) d\tau : w \in L^q(0,t;U), \quad t>0\}$$

where $\Phi w = (\Phi_0 w, 0)$. We say that the system (1.2) and (1.3) is approximately controllable if R is dense in $Z_{p,q}$ and the adjoint system is observability if $\phi \in Z_{p',q'}$, $\Phi_0^* v(t;\phi) \equiv 0$ implies $\phi = 0$. where $v(t;\phi)$ is a solution the following adjoint system of (1.2) and (1.3). (1.4)

$$\frac{d}{dt}v(t) = A_0^*v(t) + A_1^*v(t-h) + \int_{-h}^0 a(s)A_2u(t+s)ds,$$

(1.5) $v(0) = \phi^0, \quad v(s) = \phi^1(s), \quad s \in [-h, 0),$

where $\phi = (\phi^0, \phi^1) \in Z_{p',q'}$. The structural operator $F : Z_{p,q} \longrightarrow Z^*_{p',q'}$ is defined by

$$Fg = (g^0, A_1g^1(-h-s) + \int_{-h}^0 a(\tau)A_2g^1(\tau-s)d\tau).$$

We will show that if F is an isomorphism, then the approximate controllability of (1.2) and (1.3) is equivalent to the observability of (1.4) and (1.5). Finally, we remark that in the space $W^{-1,p}(\Omega)$ we can not define the attainability set using solution semigroup S(t) and it is said that the system (1.4) and (1.5) is observable if $\phi \in Z_{p',q'}$, $\Phi_0^*v(t;\phi) \equiv 0$ almost everywhere implies $\phi = 0$.

2. Notations

Let Ω be a region in an *n*-dimensional Euclidean space \mathcal{R}^n and closure $\overline{\Omega}$. $C^m(\Omega)$ is the set of all *m*-times continuously differential functions on Ω . $C_0^m(\Omega)$ will denote the subspace of $C^m(\Omega)$ consisting of these functions which have compact support in Ω . $W^{m,p}(\Omega)$ is the set of all functions f = f(x) whose derivative $D^{\alpha}f$ up to degree *m* in distribution sense belong to $L^p(\Omega)$. As usual, the norm is then given by

$$\begin{split} ||f||_{m,p,\Omega} &= (\sum_{\alpha \le m} ||D^{\alpha}f||_{p,\Omega}^{p})^{\frac{1}{p}}, \quad 1 \le p < \infty \\ ||f||_{m,\infty,\Omega} &= \max_{\alpha \le m} ||D^{\alpha}u||_{\infty,\Omega}, \end{split}$$

where $D^0 f = f$. In particular, $W^{0,p}(\Omega) = L^p(\Omega)$ with the norm $|| \cdot ||_{p,\Omega}$. Let p' = p/(p-1), $1 . <math>W^{-1,p}(\Omega)$ stands for the dual space $W_0^{1,p'}(\Omega)^*$ of $W_0^{1,p'}(\Omega)$ whose norm is denoted by $|| \cdot ||_{-1,p,\infty}$.

If X is a Banach space and $1 , <math>L^p(0,T;X)$ is the collection of all strongly measurable functions from (0,T) into X the p-th powers of norms are integrable. $C^m([0,T];X)$ will denote the set of all *m*-times continuously differentiable functions from [0,T] into X.

If X and Y are two Banach spaces, B(X, Y) is the collection of all bounded linear operators from X into Y, and B(X, X) is simply written as B(X). For an interpolation couple of Banach spaces X_0 and X_1 , $(X_0, X_1)_{\theta,p}$ and $[X_0, X_1]_{\theta}$ denote the real and complex interpolation spaces between X_0 and X_1 , respectively. Let $B_{p,q}^s(\Omega)$ denote the Besov space and $B_{p,q}^s(\Omega)$ will be denote the subspace of $B_{p,q}^s(\Omega)$ consisting of those functions which have compact support in Ω .

3. Preliminaries

Let Ω be a bounded domain in \mathcal{R}^n with smooth boundary $\partial \Omega$. Consider an elliptic differential operator of second order

$$\mathcal{A}(x, D_x) = -\sum_{i,j=1}^n \frac{\partial}{\partial x_j} (a_{i,j}(x) \frac{\partial}{\partial x_i}) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} + c(x)$$

where $\{a_{i,j}(x)\}$ is a positive definite symmetric matrix for each $x \in \overline{\Omega}$. The operator

$$\mathcal{A}'(x, D_x) = -\sum_{i,j=1}^n \frac{\partial}{\partial x_j} (a_{i,j}(x) \frac{\partial}{\partial x_i}) - \sum_{i=1}^n \frac{\partial}{\partial x_i} (b_i(x) \cdot) + c(x)$$

is the formal adjoint of \mathcal{A} .

For $1 we denote the realization of <math>\mathcal{A}$ in $L^p(\Omega)$ under the Dirichlet boundary condition by A_p

$$D(A_p) = W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega),$$

$$A_p u = \mathcal{A}u \quad \text{for} \quad u \in D(A_p).$$

For p' = p/(p-1), we can also define the realization \mathcal{A}' in $L^{p'}(\Omega)$ under Dirichlet boundary condition by $A'_{p'}$.

$$D(A'_{p'}) = W^{2,p'}(\Omega) \cap W^{1,p'}_{0}(\Omega),$$

$$A'_{p'}u = \mathcal{A}'u \quad \text{for} \quad u \in D(A'_{p'})$$

It is known that $-A_p$ and $-A'_{p'}$ generate analytic semigroups in $L^p(\Omega)$ and $L^{p'}(\Omega)$, respectively, and $A^*_p = A'_{p'}$. From the result of R. Seeley [10] (see also H. Triebel [14;p. 321]) we obtain that

$$[D(A_p), L^p(\Omega)]_{\frac{1}{2}} = W_0^{1,p}(\Omega)$$

and hence, may consider that

$$D(A_p) \subset W_0^{1,p}(\Omega) \subset L^p(\Omega) \subset W^{-1,p}(\Omega) \subset D(A'_{p'})^*.$$

Let $(A'_{p'})'$ be the adjoint of $A'_{p'}$ considered as a bounded linear operator from $D(A'_{p'})$ to $L^{p'}(\Omega)$. Let \widetilde{A} be the restriction of $(A'_{p'})'$ to $W_0^{1,p}(\Omega)$. Then by the interpolation theory, the operator \widetilde{A} is an isomorphism from $W_0^{1,p}(\Omega)$ to $W^{-1,p}(\Omega)$. Similarly, we consider that the restriction $\widetilde{A'}$ of $(A_p)' \in B(L^{p'}(\Omega), D(A_p)^*)$ to $W_0^{1,p'}(\Omega)$ is an isomorphism from $W_0^{1,p'}(\Omega)$ to $W^{-1,p'}(\Omega)$. Furthermore, as is seen in proposition 3.1 in J. M. Jeong [5], it is known that \widetilde{A} and $\widetilde{A'}$ generate analytic semigroups in $W^{-1,p}(\Omega)$ and $W^{-1,p'}(\Omega)$, respectively, and the inequality

$$||(\widetilde{A})^{is}||_{B(W^{-1,p}(\Omega))} \leq Ce^{\gamma|s|}, \quad -\infty < s < \infty,$$

holds for some constants C > 0 and $\gamma \in (0, \pi/2)$. We set

(3.1)
$$H_{p,q} = (W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\frac{1}{q},q},$$

for $q \in (1,\infty)$ Since \tilde{A} is an isomorphism from $W_0^{1,p}(\Omega)$ onto $W^{-1,p}(\Omega)$ and $W_0^{1,p}(\Omega)$ and $W^{-1,p}(\Omega)$ are ζ -convex spaces, it is easily seen that $H_{p,q}$ is also ζ -convex. From the interpolation theory and definitions of the operator \tilde{A} and the space $H_{p,q}$ we can see the following results.

PROPOSITION 3.1. The operator \widetilde{A} and $\widetilde{A'}$ generate analytic semigroups in $H_{p,q}$ and $H_{p',q'}$, respectively.

Proof. Since $-A_p$ and $-\widetilde{A}$ generate analytic semigroup in $L^p(\Omega)$ and $W^{-1,p}(\Omega)$, respectively (see Proposition 3.1 in J. M. Jeong [5]), there exists an angle $\gamma \in (0, \frac{\pi}{2})$ such that

(3.2) $\Sigma = \{\lambda : \gamma \leq \arg \lambda \leq 2\pi - \gamma\} \subset \rho(A_p) \cap \rho(\widetilde{A}),$

$$(3.3) \qquad ||(\lambda - A_p)^{-1}||_{B(L^p(\Omega))} \le C/|\lambda|, \quad \lambda \in \Sigma,$$

$$(3.4) \qquad ||(\lambda - \overline{A})^{-1}||_{B(W^{-1,p}(\Omega))} \le C/|\lambda|, \quad \lambda \in \Sigma,$$

where $\rho(A_p)$ is the resolvent set of A_p . In view of (3.3)

$$||A_p(\lambda-A_p)^{-1}u||_{p,\Omega}=||(\lambda-A_p)^{-1}A_pu||_{p,\Omega}\leq \frac{C}{|\lambda|}||A_pu||_{p,\Omega},$$

for any $u \in D(A_p)$, we have

(3.5)
$$||(\lambda - A_p)^{-1}||_{B(D(A_p))} \leq \frac{C}{|\lambda|}.$$

From (3.3) and (3.5) it follows that

(3.6)
$$||(\lambda - \widetilde{A})^{-1}||_{B(W_0^{1,p}(\Omega))} \le \frac{C}{|\lambda|}$$

and, hence from (3.4), (3.6) and the definition of the space $H_{p,q}$ we have that

$$||(\lambda - \widetilde{A})^{-1}||_{B(H_{p,q})} \leq \frac{C}{|\lambda|}.$$

Therefore we have shown that $-\tilde{A}$ generates an analytic semigroup in $H_{p,q}$.

PROPOSITION 3.2. There exists a constant C > 0 such that

$$||\widetilde{A}^{\imath s}||_{B(H_{p,q})} \leq Ce^{\gamma|\lambda|}, s \in \mathcal{R},$$

where γ is the constant in (3.2).

Proof. From Theorem 1 of Seeley [9] and Proposition 3.2 of J. M. Jeong [5] there exists a constant C > 0 such that

$$(3.7) ||(A_p)^{\epsilon+\imath s}||_{B(L^p(\Omega))} \le Ce^{\gamma|s|},$$

(3.8)
$$||\widetilde{A}^{\epsilon+\imath s}||_{B(W^{-1,p}(\Omega))} \leq Ce^{\gamma|s|},$$

for any $s \in \mathcal{R}$ and $\epsilon > 0$. From (3.7) it follows

$$(3.9) ||(A_p)^{\epsilon+\imath s}||_{B(D(A_p))} \le C e^{\gamma|s|},$$

and hence, from (3.7) and (3.9) we obtain

(3.10)
$$||\widetilde{A}^{\epsilon+\imath s}||_{B(W_0^{1,p}(\Omega))} \le Ce^{\gamma|s|}.$$

Hence from (3.1), (3.8) and (3.10) we have shown that

$$||\widetilde{A}^{\epsilon+\imath s}||_{B(H_{p,q})} \leq Ce^{\gamma|s|}.$$

So the proof is complete.

If $1 , then we see that <math>L^1(\Omega) \subset W^{-1,p}(\Omega)$ from Sobolev's embedding theorem. Furthermore, we will show that $L^1(\Omega) \subset H_{p,q}$ in the section 4. Therefore, from Propositions 3.1 and 3.2 we can apply Theorem 3.1 and Proposition 4.1 of J. M. Jeong [5] to the abstract Cauchy problem in the space $H_{p,q}$. Hence, the following equation may be considered as an equation in both $H_{p,q}$ and $W^{-1,p}(\Omega)$.

$$(3.11) \ \frac{d}{dt}u(t) = A_0u(t) + A_1u(t-h) + \int_{-h}^0 a(s)A_2u(t+s)ds + \Phi_0w(t), \quad t \in (0,T] (3.12) \quad u(0) = g^0, \quad u(s) = g^1(s) \qquad s \in [-h,0),$$

where $A_0 = -\widetilde{A}$, $A_{\iota}u$ ($\iota = 1, 2$) are the restriction $W_0^{1,p}(\Omega)$ of the following linear differential operators $-\mathcal{A}_{\iota}(\iota = 1, 2)$ with real coefficient:

$$\mathcal{A}(x, D_x) = -\sum_{i,j=1}^n \frac{\partial}{\partial x_j} (a_{i,j}(x) \frac{\partial}{\partial x_i}) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} + c(x)$$

where $a_{i,j}^{\iota} = a_{j,i}^{\iota} \in C^{1}(\overline{\Omega}), b_{i}^{\iota} \in C^{1}(\overline{\Omega}), c^{\iota} \in L^{\infty}(\Omega)$. The kernel $a(\cdot)$ belongs to $L^{q'}(-h,0)$ and the controller Φ_{0} is a bounded linear operator from some Banach space U to $L^{1}(\Omega)$. For $q \in (1,\infty)$ we set

(3.13)
$$Z_{p,q} = H_{p,q} \times L^q(-h, 0; W_0^{1,p}(\Omega)).$$

Let $g = (g^0, g^1) \in Z_{p,q}$ and $w \in L^q(0,T;U)$. Then as is seen in Proposition 4.1 of J.M. Jeong [5] a solution of the equation (3.11) and (3.12) exists and is unique for each T > 0, moreover, we have

$$\begin{aligned} ||u||_{L^{q}(0,T,W_{0}^{1,p}(\Omega))\cap W^{1,q}(0,T,W^{-1,p}(\Omega))} &\leq c(||g^{0}||_{H_{p,q}} \\ &+ ||g^{1}||_{L^{q}(-h,0,W_{0}^{1,p}(\Omega))} + ||w||_{L^{q}(0,T,U)}), \end{aligned}$$

where c is a constant. Thus, we can define the solution semigroup for the system (3.11) and (3.12) as follows [3, Theorem 4.1]:

$$S(t) = (u(t;g,0), u_t(\cdot;g,0))$$

where $g = (g^0, g^1) \in Z_{p,q}$, u(t; g, 0) is a solution of (3.11), (3.12) with $\Phi_0 = 0$ and $u_t(\cdot, g, 0)$ is the function $u_t(s; g, 0) = u(t+s; g, 0)$ defined in [-h, 0]. It is also known that S(t) is a C_0 -semigroup in $Z_{p,q}$.

We introduce the adjoint problem of (3 11) and (3,12):

(3.14)
$$\frac{d}{dt}v(t) = A_0^*v(t) + A_1^*v(t-h) + \int_{-h}^0 a(s)A_2^*v(ts)ds, \ t \in (0,T],$$

(3.15) $v(0) = \phi^0, \ v(s) = \phi^1(s), \ s \in [-h,0),$

where $A_0^* = -\widetilde{A'}$ and $A_{\iota}^*(\iota = 1, 2)$ are the adjoint operators of A_{ι} . It is easily seen that $A_{\iota}^* \in B(W_0^{1,p'}(\Omega), W^{-1,p'}(\Omega))$ for $\iota = 0, 1, 2$ and hence (3.14) and (3.15) is an equation in both $H_{p',q'}$ and $W^{-1,p'}$. We can also define the solution semigroup $S_T(t)$ of (3.14) and (3.15) by

$$S_T(t)\phi = (v(t;\phi), v_t(\cdot,\phi))$$

for $\phi = (\phi^0, \phi^1) \in Z_{p',q'}$, where $v(t; \phi)$ is the solution of (3.14) and (3.15).

The structural operator F is defined by

$$egin{aligned} &Fg = ([Fg]^0, [Fg]^1), \ &[Fg]^0 = g^0, \ &[Fg]^1(s) = A_1g^1(-h-s) + \int_{-h}^0 a(au)A_2g^1(au-s)d au \end{aligned}$$

for $g = (g^0, g^1) \in Z_{p,q}$. It is easy to see that $F \in B(Z_{p,q}, Z_{p',q'}), F^* \in B(Z_{p',q'}, Z_{p,q}^*)$. As in [5,7] we have that

(3.16)
$$FS(t) = S_T^*(t)F^*, \quad F^*S_T(t) = S^*(t)F^*.$$

4. Representation of $H_{p,q}$ into Besov spaces

Let Y_0 and Y_1 be two Banach spaces contained in a Banach space \mathcal{Y} such that the identity mapping of Y_i (i = 0, 1) in \mathcal{Y} is continuous and norms will be denoted by $|| \cdot ||_i$. The algebraic sum $Y_0 + Y_1$ of Y_0 and Y_1 is the space of all elements $a \in \mathcal{Y}$ of the form $a = a_0 + a_1$, $a_0 \in Y_0$ and $a_1 \in Y_1$. The intersection $Y_0 \cap Y_1$ and the sum $Y_0 + Y_1$ are Banach spaces with the norms

$$||a||_{Y_0 \cap Y_1} = \max \{||a||_0, ||a||_1\}$$

and

$$||a||_{Y_0+Y_1} = \inf_a \{||a_0||_0 + ||a_1||_1\}, \quad a = a_0 + a_1, \ a_i \in Y_i,$$

respectively.

142

DEFINITION (LIONS-PEETRE) 4.1. We say an intermediate space Y of Y_0 and Y_1 belongs to

(i) the class $\underline{K}_{\theta}(Y_0, Y_1), \ 0 < \theta < 1$, if for any $a \in Y_0 \cap Y_1$,

$$||a||_Y \le c||a||_0^{1-\theta}||a||_1^{\theta}$$

where c is a constant;

(ii) the class $\overline{K}_{\theta}(Y_0, Y_1)$, $0 < \theta < 1$, if for any $a \in Y$ and t > 0 there exist $a_i \in Y_i$ (i = 1, 2) such that $a = a_0 + a_1$ and

$$||a_0||_0 \le ct^{-\theta}||a||_Y, \quad ||a_1||_1 \le ct^{1-\theta}||a||_Y$$

where c is a constant;

(iii) the class $K_{\theta}(A_0, A_1)$, $0 < \theta < 1$, if the space Y belongs to both $\underline{K}_{\theta}(Y_0, Y_1)$ and $\overline{K}_{\theta}(Y_0, Y_1)$.

Here, we note that by replacing t with t^{-1} the condition in (ii) rewrite as follows:

$$||a_0||_0 \le ct^{ heta}||a||_Y, \quad ||a_1||_1 \le ct^{ heta-1}||a||_Y$$

The following result is obtained from Lions-Peetre theorem 2.3 in [6].

PROPOSITION 4.1. For $0 < \theta_0 < \theta < \theta_1 < 1$, if the spaces X_0 and X_1 belong to the space $K_{\theta_0}(Y_0, Y_1)$ and the space $K_{\theta_1}(Y_0, Y_1)$, respectively, then

$$(X_0, X_1)_{\frac{\theta - \theta_0}{\theta_1 - \theta_0}, p} = (Y_0, Y_1)_{\theta, p}.$$

In particular, if the space X_1 belongs to $K_{\theta_1}(Y_0, Y_1)$ then for $0 < \theta < \theta_1 < 1$

$$(Y_0, X_1)_{rac{ heta}{ heta_1}, p} = (Y_0, Y_1)_{ heta, p}.$$

If the space X_0 belongs to $K_{\theta_0}(Y_0, Y_1)$, then $0 < \theta_0 < \theta < 1$

$$(X_0,Y_1)_{\frac{\theta-\theta_0}{1-\theta_0},p}=(Y_0,Y_1)_{\theta,p}.$$

Let $A = -\mathcal{A}(x, D_x)$ as in section 3. Then the operator A is an isomorphism from $W_0^{1,p}(\Omega)$ to $W^{-1,p}(\Omega)$.

LEMMA 4.1. For any t > 0, there exists a constant C such that

(4.1)
$$||(t+A)^{-1}||_{B(W^{-1,p}(\Omega),L^{p}(\Omega))} \leq Ct^{-\frac{1}{2}},$$

and

144

(4.2)
$$||(t+A)^{-1}||_{B(L^{p}(\Omega), W_{0}^{1,p}(\Omega))} \leq Ct^{-\frac{1}{2}}.$$

Proof. For t > 0 since $(t + A'_{p'})^{-1}$ is an isomorphism from $L^{p'}(\Omega)$ to $D(A'_{p'})$, the resolvent $((t + A'_{p'})^{-1})'$ is an isomorphism from $D(A'_{p'})^*$ onto $L^P(\Omega)$. It is not difficult to see that

$$((t + A'_{p'})^{-1})' = (t + (A'_{p'})')^{-1}$$

and

$$(t + (A'_{p'})')^{-1}|_{W^{-1,p}(\Omega)} = (t+A)^{-1}.$$

Therefore, we have

(4.3)
$$||(t+A)^{-1}||_{B(D(A'_{p'})^*,L^{P}(\Omega))} \le C$$

where C is a constant. Combining (3.3) and (4.3) we obtain the inequality of (4.1). The proof of (4.2) is similar.

THEOREM 4.1. For $1 , the space <math>L^{P}(\Omega)$ belongs to the class $K_{1/2}(W_{0}^{1,p}(\Omega), W^{-1,p}(\Omega))$.

Proof. For any $u \in W_0^{1,p}(\Omega)$ and t > 0, from Lemma 4.1 and

$$u = A(t+A)^{-1}u + t(t+A)^{-1}u = (t+A)^{-1}Au + t(t+A)^{-1}u,$$

it follows

$$\begin{aligned} ||u||_{p,\Omega} \leq ||(t+A)^{-1}||_{B(W^{-1,p}(\Omega),L^{P}(\Omega))}||Au||_{-1,p,\Omega} \\ &+ t||(t+A)^{-1}||_{B(W^{-1,p}(\Omega),L^{P}(\Omega))}||u||_{-1,p,\Omega} \\ \leq Ct^{-\frac{1}{2}}||u||_{1,p,\Omega} + Ct^{\frac{1}{2}}||u||_{-1,p,\Omega}. \end{aligned}$$

By choosing t > 0 such that $t^{-1/2}||u||_{1,p,\Omega} = t^{1/2}||u||_{-1,p,\Omega}$, we obtain

$$||u||_{p,\Omega} \le C ||u||_{1,p,\Omega}^{rac{1}{2}} ||u||_{-1,p,\Omega}^{rac{1}{2}}$$

Therefore, $L^{P}(\Omega)$ belongs to the class $\underline{K}_{1/2}(W_{0}^{1,p}(\Omega), W^{-1,p}(\Omega))$. Put $u_{0} = t(t+A)^{-1}u$ and $u_{1} = A(t+A)^{-1}u$ for any $u \in L^{p}(\Omega)$. Then $u = u_{0} + u_{1}$, and we obtain that

$$\begin{aligned} ||u_0||_{1,p,\Omega} &\leq t ||(t+A)^{-1}u||_{B(L^p(\Omega),W_0^{1,p}(\Omega))} ||u||_{p,\Omega} \leq Ct^{\frac{1}{2}} ||u||_{p,\Omega} \\ ||u_1||_{-1,p,\Omega} &\leq C ||(t+A)^{-1}u||_{1,p,\Omega} \leq Ct^{\frac{1}{2}} ||u||_{p,\Omega}. \end{aligned}$$

Therefore $L^{P}(\Omega)$ belongs to the class $\overline{K}_{1/2}(W_{0}^{1,p}(\Omega), W^{-1,p}(\Omega))$, and hence, it belongs to $K_{1/2}(W_{0}^{1,p}(\Omega), W^{-1,p}(\Omega))$.

THEOREM 4.2. If $1 - 2\theta - 1/p \neq 0$ and $2\theta - 2 + 1/p \neq 0$ for $0 < \theta < 1$ and $1 < p, q < \infty$, then

$$(W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\theta,q} = \begin{cases} B_{p,q}^{1-2\theta}(\Omega) & \theta < \frac{1}{2}(1-\frac{1}{p}), \\ B_{p,q}^{1-2\theta}(\Omega) & \theta > \frac{1}{2}(1-\frac{1}{p}). \end{cases}$$

where $B_{p,q}^{1-2\theta}(\Omega) = \{ u \in B_{p,q}^{1-2\theta}(\Omega) : u|_{\partial\Omega} = 0 \}$. In particular, we obtain that

$$(W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\frac{1}{2},q} = B_{p,q}^0(\Omega)$$

Proof. Let $0 < \theta < 1/2$. Then from Proposition 4.1 we obtain that for any $0 < \theta < 1/2$

$$(W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\theta,q} = (W_0^{1,p}(\Omega), L^p(\Omega))_{2\theta,q}$$
$$= (L^p(\Omega), W_0^{1,p}(\Omega))_{1-2\theta,q}$$

Therefore, in view of the result of Grisvard theorem in Triebel [14; p. 321],

$$(W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\theta,q} = \begin{cases} B_{p,q}^{1-2\theta}(\Omega) & 1-2\theta > \frac{1}{p}, \\ B_{p,q}^{1-2\theta}(\Omega) & 1-2\theta < \frac{1}{p}. \end{cases}$$

Let $1/2 < \theta < 1$. Then from Proposition 4.1 it follows

$$(W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\theta,q} = (L^p(\Omega), W^{-1,p}(\Omega))_{2\theta-1,q}$$
$$= ((L^{p'}(\Omega), W_0^{-1,p'}(\Omega))_{2\theta-1,q'})^*$$

where p' = p/(p-1). In view of Grisvard theorem if $2\theta - 1 - 1/p' \neq 0$ then

$$(L^{p'}(\Omega), W_{0}^{1,p'}(\Omega))_{\theta,q} = \begin{cases} B_{p',q'}^{2\theta-1}(\Omega) & 2\theta-1 > \frac{1}{p'}, \\ B_{p',q'}^{2\theta-1}(\Omega) & 2\theta-1 < \frac{1}{p'}. \end{cases}$$

From Theorem 4.8.2 in H. Triebel [14; p. 332], we obtain that

$$(B^{2\theta-1}_{p',q'}(\Omega))^* = B^{1-2\theta}_{p,q}(\Omega)$$

if $2\theta - 1 - 1/p' \neq 0$. Since $2\theta - 1 - 1/p' \neq 0$ i.e. $2\theta - 2 + 1p \neq 0$, if $1/2 < \theta < 1$ and $2\theta - 2 + 1/p \neq 0$ then

$$(W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\theta,q} = B_{p,q}^{1-2\theta}(\Omega).$$

Consequently, we obtain that

$$(W^{1,p}_0(\Omega),W^{-1,p}(\Omega))_{\frac{1-\theta}{2},q}=B^{\theta}_{p,q}(\Omega),\qquad \text{if}\quad 0<\theta<\frac{1}{p}$$

 and

$$(W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\frac{1+\theta}{2},q} = B_{p,q}^{-\theta}(\Omega) \quad \text{if} \quad 0 < \theta < 1 - \frac{1}{p}.$$

Hence, if $0 < \theta < \min\{1/p, 1 - 1/p\}$

$$(W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\frac{1}{2},q} = ((W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\frac{1-\theta}{2},q}, (W_0^{1,p}(\Omega), W^{-1,p}(\Omega))_{\frac{1+\theta}{2},q})_{\frac{1}{2},q} = (B_{p,q}^{\theta}(\Omega), B_{p,q}^{-\theta}(\Omega))_{\frac{1}{2},q} = B_{p,q}^{0}(\Omega).$$

The last equality is obtained from Theorem 1 of section 4.3.1 in H. Treibel [14; p. 317]. Hence the proof is complete.

146

147

THEOREM 4.3. Let $1 < p, q < \infty$. (i) If $2/q - 2 + 1/p \neq 0$ then

$$H_{p,q} = \begin{cases} B_{p,q}^{1-\frac{2}{q}}(\Omega) & \text{if } \frac{1}{q} < \frac{1}{2}(1-\frac{1}{p}), \\ B_{p,q}^{1-\frac{2}{q}}(\Omega) & \text{if } \frac{1}{q} > \frac{1}{2}(1-\frac{1}{p}). \end{cases}$$

(ii) If $\frac{1}{p'} < 1/n(1-2/q')$ then

$$H_{p',q'} \subset C_0(\overline{\Omega}) \subset L^\infty.$$

Proof. The relation (i) follows directly from Theorem 4.2. Let $\frac{1}{p'} < 1/n(1-2/q')$. Then from (i)

$$H_{p',q'} = (W_0^{1,p'}(\Omega), W^{-1,p'}(\Omega))_{\frac{1}{q'},q'} = B_{p',q'}^{1-\frac{2}{q'}}(\Omega)$$

and from Sobolev-Besov's and Sobolev's embedding theorems we obtain that

$$B_{p^{'},q^{'}}^{1-\frac{2}{q^{'}}}(\Omega)\subset W_{p^{'}}^{1-\frac{2}{q^{'}}}\subset C_{0}(\overline{\Omega})$$

Hence, the first inclusion in (ii) follows.

5. Control problem for $L^1(\Omega)$ -valued controller

As is seen in section 4, if 1/p' - 1/n(1-2/q') < 0 then we obtained that

$$H_{p',q'} \subset C_0(\overline{\Omega}) \subset L^\infty(\Omega).$$

Thus, since

$$H_{p,q} = H^*_{p' q'} \supset C_0(\overline{\Omega})^* \supset L^1(\Omega)$$

we consider Φ_0 as an operator in $B(U, H_{p,q})$. Hence it is possible to investigate the control problem for (3.11) and (3.12) in $H_{p,q}$. In what

follows in this section we fix p and q so that 1/p' - 1/n(1-2/q') < 0. Then it immediately implies that 1 . Let <math>A be the infinitesimal generator of S(t) as in section 3. Then the equation (3.11) and (3.12) can be transformed into an abstract equation as follows

$$egin{aligned} z(t) &= Az(t) + \varPhi w(t), \ z(0) &= g \end{aligned}$$

where $g = (g^0, g^1) \in Z_{p,q}$ and the controller operator is defined $\Phi w = (\Phi_0 w, 0)$. In this case for the solution u of (3.11) and (3.12) the equation satisfied by $(u(t), u_t(\cdot))$ is an equation in $Z_{p,q}$ since Φ_0 is an operator into $H_{p,q}$. Since the dual Φ_0^* of Φ_0 is the operator from $L^{\infty}(\Omega)$ into U^* , the operator Φ_0^* may be considered as an operator from $H_{p',q'}$ into U^* , Hence with the aid of Theorem 4.3 we remarked that the condition that $\Phi_0^*\phi = 0$ almost everywhere can be rewrite to the fact that $\Phi_0^*\phi \equiv 0$ for $\phi \in Z_{p,q}$. We define the attainable set by

$$R = \{\int_0^t S(t-\tau)\Phi w(\tau)d\tau : w \in L^q(0,t;U), \quad t \ge 0\}.$$

DEFINITION 5.1. (1) The system (3.11), (3.12) is approximately controllable if $\overline{R} = Z_{p,q}$, where \overline{R} is the closure of R in $Z_{p,q}$

(2) The system (3.14), (3.15) is observable if for $\phi \in Z_{p',q'}$, $\Phi_0^*[S_T(t)\phi]^0 \equiv 0$ implies $\phi = 0$.

THEOREM 5.1. Let the structural operator F is an isomorphism. Then the system (3.11) and (3.12) is approximately controllable if and only if the system (3.14) and (3.15) is observable.

Proof. Let the system (3.11) and (3.12) is approximately controllabe. Then for $f \in Z_{p,q}^*$

$$(f, \int_0^t S(t-\tau)\Phi w(\tau)d\tau) = 0$$

for $w \in L^q(0,t;U)$ and t > 0 implies f = 0. By duality theorem it is equivalent to the fact that for any $f \in Z^*_{p,q}$, $\Phi^*S^*(t)f \equiv 0$ implies

148

f = 0. Since the operator F^* is an isomorphism by assumption, there exists $\phi \in Z_{p',q'}$ such that $f = F^*\phi$. From (3.16) we obtain that

$$\Phi_0^*[S^*(t)f]^0 = \Phi_0^*[FS_T(t)\phi]^0 = \Phi_0^*[S_T(t)\phi]^0.$$

Hence, the system (3.11) and (3.12) is approximately controllable iff for any $\phi \in Z_{p',q'}$, $\Phi_0^*[S_T(t)\phi]^0 \equiv 0$ implies $\phi = 0$. Therefore, the statement is equivalent that the system (3.14) and (3.14) is observable.

Remark. When we deal with the control problem of (3.11) and (3.12) in negative space $W^{-1,p}(\Omega)$, we needed a assumption that the kernel $a(\cdot)$ is Hölder continuous for using of the properties of fundamental solution since Φ_0 is not operator into $H_{p,q}$. If we assume that $a(\cdot)$ is Hölder continuous then the fundamental solution of (3.11) and (3.12) exists (see in [13]). By fixing p, q so that 1and <math>1/p' < 1/n(1 - 1/q'), we can obtain the Theorem 5.1 using the solution semigroup without requirement of fundamental solution of (3.11) and (3.12). Hence, the kernel $a(\cdot)$ need not be Holder continuous but has only to belong to $L^{q'}(-h, 0)$ for wellposedness and regularity for equation (3.11) and (3.12).

REFERENCES

- S. Agmon, On the eigenfunctions and the eigenvalues of general elliptic boundary value problems, Comm Pure. Appl Math. 15 (1963), 119-147
- P L Butzer and H Berens, Semi-Groups of Operators and Approximation, Springer-verlag, Belin-Heidelberg-NewYork, 1967.
- G Di Blasio, K Kunisch and E. Sinestrari, L²-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivative, J. Math Anal Appl. 102 (1984), 38-57
- [4] G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201
- [5] J. M Jeong, Retarded functional differential equations with L^1 -valued controller, to appear Funkcial Ekvac..
- [6] J. L Lions and J Peetre, Sur une classe d'espaces d'interpolation, Inst Hautes Études Sci. Publ Math. 19 (1964), 5-68.

- S. Nakagiri, Structural properties of functional differential equations in Banach spaces, Osaka J. Math. 25 (1988), 353-398.
- [8] S. Nakagiri and M. Yamamoto, Controllability and observability of linear retarded systems in Banach space, to appear in Int. J. Control.
- [9] R. Seeley, Norms and domains of the complex power A_B^Z , Amer. J. Math 93 (1971), 299-309
- [10] R. Seeley, Interpolation in L^p with boundary conditions, Studia Math. 44 (1972), 47-60
- [11] H. Tanabe, Equations of Evolution, Pitman-London, 1979
- [12] H. Tanabe, Functional analysis II, Jikko Suppan Publ. Co., Tokyo, 1981 [in Jopanese]
- [13] H. Tanabe, Fundamental solution of differential equation with time delay in Banach space, Funkcial. Ekvac 35(1) (1992), 149–177.
- [14] H Triebel, Interpolation Theory, Functional Spaces, Differential Operators, North-Holland, 1978.
- [15] K Yosida, Functional analysis, 3rd ed Springer, Berlin-Gottingen-Heidelberg, 1980.

Division of Mathematical Sciences Pukyong National University Pusan 608-737, Korea *E-mail*: e-mail: jmjeong@pknu.ac.kr

Department of Mathematical Education Kyungnam University Masan 631-701, Korea