• Title/Summary/Keyword: P&S-wave velocity

Search Result 184, Processing Time 0.027 seconds

A Study on the Correlation Between Electrical Resistivity and Rock Classification (전기비저항과 암반분류의 상관관계에 대한 고찰)

  • Kwon, Hyoung-Seok;Hwang, Se-Ho;Baek, Hwan-Jo;Kim, Ki-Seog
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.350-360
    • /
    • 2008
  • Electrical resistivity is one of physical property of the earth and measured by electrical resistivity survey, electrical resistivity logging and laboratory test. Recently, electrical resistivity is widely used in determination of rock quality in support pattern design of road and railway tunnel construction sites. To get more reliable rock quality data from electrical resistivity, it needs a lot of test and study on correlation of resistivity and rock quality. Firstly, we did rock property test in laboratory, such as P wave velocity, Young's modulus, uniaxial compressive strength (UCS) and electrical resistivity. We correlate each test results and we found out that electrical resistivity has highly related to P wave velocity, Young's modulus and UCS. Next, we accomplished electrical resistivity survey in field site and carried out electrical resistivity logging at in-situ area. We also performed rock classification, such as RQD, RMR and Q-system and we correlate electrical resistivity to RMR data. We found out that electrical resistivity logging data are highly correlate to RMR. Also we found out that electrical resistivity survey data are lower than electrical resistivity logging data when there are faults or fractures. And it cause electrical resistivity survey data to lowly correlate to RMR.

이산 웨이브릿 변환을 이용한 탄성파 주시결정

  • Kim, Jin-Hu;Lee, Sang-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2001
  • The discrete wavelet transform(DWT) has potential as a tool for supplying discriminatory attributes with which to distinguish seismic events. The wavelet transform has the great advantage over the Fourier transform in being able to localize changes. In this study, a discrete wavelet transform is applied to seismic traces for identifying seismic events and picking of arrival times for first breaks and S-wave arrivals. The precise determination of arrival times can greatly improve the quality of a number of geophysical studies, such as velocity analysis, refraction seismic survey, seismic tomography, down-hole and cross-hole survey, and sonic logging, etc. provide precise determination of seismic velocities. Tests for picking of P- and S- wave arrival times with the wavelet transform method is conducted with synthetic seismic traces which have or do not have noises. The results show that this picking algorithm can be successfully applied to noisy traces. The first arrival can be precisely determined with the field data, too.

  • PDF

On Numerical Method for Radiation Problem of a 2-D Floating Body (2차원 부유체 강제동요문제의 수치해석에 관하여)

  • Y.S. Shin;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.43-53
    • /
    • 1993
  • There exist two difficulties in the nonlinear wave-body problems. First is the abrupt behavior near the intersection point between the body and the free surface, and second is the far field treatment. In this paper, the far field treatment is considered. The main idea is the Taylor series expansion of free-surface geometry and the application of F.F.T. algorithm. The numerical step is as follows. The velocity potential is expressed by the Green's theorem. and the solution is obtained by iteration method. In the iteration stage, the expressions by the Green's theorem are transformed to the convolution forts with the expansion of free surface by the wave slope. Here F.F.T. is applied, so the computing time can be of O(Nlog N) where N is the number of unknowns. The numerical analysis is carried out and the results are compared with other results in linear floating body problem and nonlinear moving pressure patch problem, and good agreements are obtained. Finally nonlinear floating body radiation problem is carried out with computing time of O(Nlog N).

  • PDF

Experimental Investigation of Impact-Echo Method for Concrete Slab Thickness Measurement

  • Popovics John S.;Cetrangolo Gonzalo P.;Jackson Nicole D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.427-439
    • /
    • 2006
  • Accurate estimates of in place thickness of early age (3 to 28 days after casting) concrete pavements are needed, where a thickness accuracy of ${\pm}6mm$ is desired. The impact-echo method is a standardized non-destructive technique that has been applied for this task. However, the ability of impact-echo to achieve this precision goal is affected by Vp (measured) and ${\beta}$ (assumed) values that are applied in the computation. A deeper understanding of the effects of these parameters on the accuracy of impact-echo should allow the technique to be improved to meet the desired accuracy goal. In this paper, the results of experimental tests carried out on a range of concrete slabs are reported. Impact-echo thickness estimation errors caused by material property gradients and sensor type are identified. Correction factors to the standard analysis method are proposed to correct the identified errors and to increase the accuracy of the standard method. Results show that improved accuracy can be obtained in the field by applying these recommendations with the standard impact-echo method.

The fruit of Acanthopanax senticosus Harms improves arterial stiffness and blood pressure: a randomized, placebo-controlled trial

  • Oh, Eunkyoung;Kim, Youjin;Park, Soo-yeon;Lim, Yeni;Shin, Ji-yoon;Kim, Ji Yeon;Kim, Ji-Hyun;Rhee, Moo-Yong;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.322-333
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Arterial stiffness and endothelial dysfunction are 2 of the independent predictors for cardiovascular disease, while Acanthopanax senticosus Harms (ASH) is a traditional medicinal plant that can improve cardiovascular health. This study aimed to investigate the efficacy of the fruit of ASH on vascular function in apparently healthy subjects. SUBJECTS/METHODS: A 12-week, randomized, double-blind, placebo-controlled design, consisting of healthy adults with at least 2 of the following 3 conditions: borderline high blood pressure (BP; 120 mmHg ≤ systolic BP ≤ 160 mmHg or 80 mmHg ≤ diastolic BP ≤ 100 mmHg), smoking (≥10 cigarettes/day), and borderline blood lipid levels (220 ≤ total cholesterol ≤ 240, 130 ≤ low density lipoprotein cholesterol ≤ 165, or 150 ≤ triglyceride ≤ 220 mg/dL). Randomly assigned 76 subjects who received a placebo or 2 doses of ASH fruit (low, 500 mg/day; high, 1,000 mg/day) completed the intervention. Brachial-ankle pulse wave velocity (baPWV), flow-mediated dilation, carotid intima-media thickness, and BP were measured both at baseline and following the 12-week intervention. Endothelial nitric oxide synthase (eNOS) phosphorylation was assessed by western blotting. RESULTS: Compared with the placebo group, the low-dose group showed more significant changes after the 12-week intervention period in terms of systolic BP (0.1 vs. -7.7 mmHg; P = 0.044), baPWV (31.3 vs. -98.7 cm/s; P = 0.007), and the ratio of phospho-eNOS/eNOS (0.8 vs. 1.22; P = 0.037). CONCLUSIONS: These results suggest that ASH fruit extract at 500 mg/day has the potential to improve BP and arterial stiffness via endothelial eNOS activation in healthy adults with smoking and the tendency of having elevated BP or blood lipid parameters.

Effects of vessel-pipe coupled dynamics on the discharged CO2 behavior for CO2 sequestration

  • Bakti, Farid P.;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.317-332
    • /
    • 2020
  • This study examines the behaviors and properties of discharged liquid CO2 from a long elastic pipe moving with a vessel for the oceanic CO2 sequestration by considering pipe dynamics and vessel motions. The coupled vessel-pipe dynamic analysis for a typical configuration is done in the frequency and time domain using the ORCAFLEX program. The system's characteristics, such as vessel RAOs and pipe-axial-velocity transfer function, are identified by applying a broadband white noise wave spectrum to the vessel-pipe dynamic system. The frequency shift of the vessel's RAO due to the encounter-frequency effect is also investigated through the system identification method. Additionally, the time histories of the tip-of-pipe velocities, along with the corresponding discharged droplet size and Weber numbers, are generated for two different sea states. The comparison between the stiff non-oscillating pipe with the flexible oscillating pipe shows the effect of the vessel and pipe dynamics to the discharged CO2 droplet size and Weber number. The pipe's axial-mode resonance is the leading cause of the fluctuation of the discharged CO2 properties. The significant variation of the discharged CO2 properties observed in this study shows the importance of considering the vessel-pipe motions when designing oceanic CO2 sequestration strategy, including suitable sequestration locations, discharge rate, towing speed, and sea states.

Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity (Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향)

  • Tsuji, Takeshi;Iturrino, Gerardo J.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2008
  • To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.

A Comparative study on Dynamic & Static elastic modulus of cement mortar specimens (시멘트 모르타르 재료의 동탄성계수와 정탄성계수 비교 연구)

  • O, Seon-Hwan;Kim, Hyoung-Soo;Jang, Bo-An;Suh, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.127-138
    • /
    • 2000
  • This study was conducted to examine the differences between dynamic and static elastic constants by use of some laboratory tests of cement mortar specimens which have different water/cement mixing ratios. Specific gravity measurement, ultrasonic velocity estimating and uniaxial compression test were adopted to acquire the dynamic and static elastic constants. Digital data acquisition and processing enhanced the accuracy of estimating the velocities of specimens drastically, Also, the method using the gradient of propagation delay time in according to increment of specimen length more enhanced the accuracy than the method using the only one specimen length over total propagation time. The correlation between density and the P and S wave velocity of specimens shows reliable positive relation and the correlation between density and the strength of uniaxial compression has the similar relationship. The dynamic Young's modulus $(E_D)$ is alway greater than the static Young's modulus $(E_S)$ and there is increasing tendency of the ratio $(E_D/E_S)$ according to the increase of density or strength of the specimens. On the other hand, there is no typical relationship between dynamic Poisson's ratio $({\nu}_D)$ and static Poisson's ratio $({\nu}_S)$ and just the ratio of ${\nu}_D/{\nu}_S$ ranges front 69 to 122 %.

  • PDF

Interpretation of Geophysical and Engineering Geology Data from a Test Site for Geological Field Trip in Jeungpyung, Chungbuk (충북 증평 지질학습장 시험부지에 대한 물리탐사 및 지질공학 자료의 해석)

  • Kim, Kwan-Soo;Yun, Hyun-Seok;Sa, Jin-Hyeon;Seo, Yong-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.339-352
    • /
    • 2016
  • The best way of investigating the physical and mechanical properties of subsurface materials is the combined interpretation of data from borehole geophysical surveys and geotechnical experiments with rock samples. In this study two surface seismic surveys with refraction and surface-wave method are alternatively conducted for downhole seismic surveys in test site for geological field trip in Jeungpyung, Chungbuk. P- and S-wave velocity structures are delineated by refraction and MASW (multichannel analysis of shear waves) methods, respectively. Possion's ratio section, reconstructed from P- and S-wave velocities, is correlated to the outcrop geological features consisting of reddish sedimentary rock, gray volcanic rock, and joints/fractures. In addition, rock samples representative for reddish sedimentary and gray volcanic features are geotechnically analyzed to provide physical, mechanical properties, and elastic modulus. Dynamic elastic moduli estimated from geophysical data is found to be higher than the one from geotechnical data. Reddish sedimentary rock characterized with low porosity and moisture content corresponds to the zone of low electrical resistivities and their small variations in the resistivity sections between the rainy and dry days. This trend suggests that the weathered gray volcanic rock and the nearby fractures with higher low porosity and moisture content are interpreted to be good carrier especially in rainy season.

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.