• Title/Summary/Keyword: Ozone sensitivity

Search Result 84, Processing Time 0.023 seconds

Effect of UV Radiation on Early Growth of Korean Rice Cultivars(Oryza sativa L.)

  • Choi, Kwan-Sam;In, Jun-Gyo;Kang, Si-Yong;Bae, Chang-Hyu;Lee, Hyo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.296-301
    • /
    • 1999
  • The concerns on the crop damage by ultraviolet (UV) radiations is increasing owing to the decrease of their absorbing stratospheric ozone in the tropospheric. Cultivar differences on early growth of UV radiation among five Korean rice cultivars, four japonica types and one Tongil type (indica-japonica cross hybrid), were studied. Pot-seeded rice plants were grown under four different radiation conditions, i.e., visible radiation only, visible radiation with supplemented with high or low dose of UV-B (280~320 nm in wavelength) and UV-C (less than 280 nm in wavelength). The inhibitory degree on plant height, shoot and root weight and length of leaf blade and leaf sheath were determined at 40 days after seeding. UV-C showed the most severe inhibitory effect on the degree of biomass gain and leaf growth in most cultivars examined, followed by high UV-B and low UV-B. Among the cultivars used, the Kuemobyeo was the most sensitive cultivar and had not repair or showed resistance ability to continued irradiation of UV radiation. However, Janganbyeo and Jaekeon showed different responses that the elongation of leaf blades was promoted on 2nd and 3rd leaves and inhibited on 4th and 5th leaves but this inhibitory degree was reduced on 6 th and 7th leaves. Such tendency on leaf growth means that both cultivars had low sensitivity and most resistant ability to continued irradiation of UV radiation. While Tongil showed different response to enhanced UV radiation, ie., low UV-B promoted leaf growth but the inhibitory was severely increased by continued irradiation of high UV-B and UV-C, which means that Tongil had high threshold of UV radiation for response as an inhibitory light of plant growth. The results of this study indicate that the differences on sensitivity or resistant to the effects of UV radiation were existed among Korean rice cultivars.

  • PDF

Effect of Removal of Power Plant Emissions on the characteristics of Ozone Concentration Changes in Summer (화력발전소 배출량 제거에 따른 여름철 O3 농도의 변화 특성)

  • Kim, Dongjin;Jeon, Wonbae;Park, Jaehyeong;Mun, Jeonghyeok
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • In this study, the changes in ozone (O3) concentrations due to the removal of power plant emissions were analyzed using a community multi-scale air quality (CMAQ) model. Two different CMAQ model simulations, one considering the emissions from the Hadong power plant and one without considering the emissions, were conducted to investigate the effect of the emissions on the changes in the O3 concentrations in the surrounding areas. Subsequently, the CMAQ simulations exhibited an increase in the O3 concentration (25.24%) despite a decrease in the NOx (-18.87%) and volatile organic carbon (VOC, -11.27%) concentrations, which are major O3 precursors. The changes in the NO and O3 concentrations due to the removal of power plant emissions presented a strong negative correlation (r= -0.72). This indicated that the increase in the O3 concentration was mainly attributed to the significantly decreased NO concentration, thus, mitigating the O3 titration reaction (NO+O3→NO2+O2). Additionally, due to the VOC-limited (i.e., NOx-saturated) conditions in the study region, NO affected the O3 concentration, indicating that the O3 concentrations in a particular region are not only proportional to the increase or decrease in emissions. Therefore, an in-depth understanding of the chemical O3 production and loss in a particular region is necessary to accurately evaluate the effect of emission control on the changes in the O3 concentration.

Photosynthetic Characteristics and a Sensitive Indicator for $O_3$-exposed Platanus orientalis (오존에 노출된 버즘나무의 광합성 특성과 민감성 지표)

  • Lee Jae-Cheon;Oh Chang-Young;Han Sim-Hee;Kim Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.220-226
    • /
    • 2005
  • We investigated the effect of $O_3$ on the photosynthetic characteristics of oriental plane (Platanus orientalis L.) that is used as a side tree or ornamental tree in Korea. Two-year-old oriental plane seedlings were transplanted to pots and transferred into a closed $O_3$ chamber, Photosynthetic pigment content and photosynthetic characteristics of leaves were measured every three weeks during 100 ppb $O_3$ fumigation. There was no visible foliar injury by $O_3$ exposure and the content of photosynthetic pigments did not show significant differences between control and $O_3$-treated seedlings. But photosynthetic rate, stomatal conductance, and water use efficiency in leaves of $O_3$-treated seedlings were reduced after six weeks of ozone fumigation. In addition, reduction of carboxylation efficiency and photochemical efficiency was observed in leaves of $O_3$-treated seedlings after three weeks and six weeks. In accordance with our results, carboxylation efficiency, the most sensitive parameter to $O_3$ stress, was considered to be a suitable indicator of $O_3$ sensitivity.

Disposable Microchip-Based Electrochemical Detector Using Polydimethylsiloxane Channel and Indium Tin Oxide Electrode (Polydimethylsiloxane 채널과 indium tin oxide 전극을 이용한 일회용 전기화학적 검출 시스템)

  • Yi In-Je;Kang Chi-Jung;Kim Yong-Sang;Kim Ju-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.227-231
    • /
    • 2005
  • We have developed a microsystem with a capillary electrophoresis (CE) and an electrochemical detector (ECD). The microfabricated CE-ECD systems are adequate for a disposable type and the characteristics are optimized for an application to the electrochemical detection. The system was realized with polydimethylsiloxane (PDMS)-glass chip and indium tin oxide electrode. The injection and separation channels (80 um wide$\ast$40 um deep) were produced by moulding a PDMS against a microfabricated master with relatively simple and inexpensive methods. A CE-ECD systems were fabricated on the same substrate with the same fabrication procedure. The surface of PDMS layer and ITO-coated glass layer was treated with UV-Ozone to improve bonding strength and to enhance the effect of electroosmotic flow. For comparing the performance of the ITO electrodes with the gold electrodes, gold electrode microchip was fabricated with the same dimension. The running buffer was prepared by 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) titrated to PH 6.5 using 0.1 N NaOH. We measured olectropherograms for the testing analytes consisted of catechol and dopamine with the different concentrations of 1 mM and 0.1 mM, respectively. The measured current peaks of dopamine and catechol are proportional to their concentrations. For comparing the performance of the ITO electrodes with the gold electrodes, electropherograms was measured for CE-ECD device with gold electrodes under the same conditions. Except for the base current level, the performances including sensitivity, stability, and resolution of CE-ECD microchip with ITO electrode are almost the same compared with gold electrode CE-ECD device. The disposable CE/ECD system showed similar results with the previously reported expensive system in the limit of detection and peak skew. When we are using disposable microchips, it is possible to avoid polishing electrode and reconditioning.

Recent Changes in Solar Irradiance, Air Temperature and Cloudiness at King Sejong Station, Antarctica (남극 세종기지에서 최근 태양 복사, 기온과 운량의 변화)

  • Lee, Bang Yong;Cho, Hi Ku;Kim, Jhoon;Jung, Yeon Jin;Lee, Yun Gon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.333-342
    • /
    • 2006
  • The long-term trends of global solar irradiance, air temperature, specific humidity and cloudiness measured at King Sejong station, Antarctica, during the period of 1988-2004, have been investigated. A statistically insignificant decrease, -0.21 $Wm^{-2}yr^{-1}$ (-0.26 %$yr^{-1}$, P<0.5) in global solar irradiance was found in an analysis from the time series of the monthly mean values, except for the increasing trends only in two months of January and June. The trends in irradiance are directly and inversely associated with the cloudiness trends in annual and monthly means. The trends in surface air temperature show a slight warming, $0.03^{\circ}Cyr^{-1}$ (1.88 %$yr^{-1}$, P<0.5) on the annual average, with cooling trend in the summer months and the warming in the winter. The exact relationship, if any, between the irradiance and temperature trends is not known. No significant tendency was found in specific humidity for the same periods. Recent (1996-2004) erythermal ultraviolet irradiance shows decreasing trend in annual mean, -0.15 $mWm^{-2}yr^{-1}$ (-1.18 %$yr^{-1}$, P<0.1) which is about five times the trends of global solar irradiance. The ratio of erythermal ultraviolet to global solar irradiance shows remarkable seasonal variations with annual mean value of 0.01 % and a peak in October and November, showing the increase of ultraviolet irradiance resulting from the Antarctic ozone hole. The sensitivity of global solar irradiance to the change in cloudiness is roughly $13%oktas^{-1}$ which is about twice of the value at the South Pole due to the difference in the average surface reflectance between the two stations. Much more sensitive values of $59%oktas^{-1}$ was found for erythermal UV irradiance than for the global solar irradiance.

Life Cycle Assessment of Mobile Phone Charger Containing Recycled Plastics (재생 플라스틱을 적용한 휴대폰 충전기 전과정평가)

  • Heo, Young-chai;Bae, Dae-sik;Oh, Chi-young;Suh, Young-jin;Lee, Kun-mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.698-705
    • /
    • 2017
  • Environmental impact of a mobile phone charger containing recycled plastic was quantified using LCA and the environmental benefits from the use of recycled and virgin plastic were compared. The assessment considers potential environmental impacts across the whole life cycle of the charger including; pre-manufacturing; manufacturing; distribution; product use; and end-of-life stages and quantified six environmental impact categories; Abiotic depletion; Acidification; Eutrophication; Global warming; Ozone layer depletion; and Photochemical oxidants creation. The study showed that the environmental impacts of the use stage accounted for 94.4% and 70% in the resource depletion and global warming impact categories, respectively, and the environmental impacts of the pre - manufacturing stage accounted for more than 98% in the other impact categories. The main cause of the environmental impacts in the use stage was electricity consumed by the charger. The main cause in the pre-manufacturing stage was PBA (Printed Board Assembly) and external case manufacturing. In order to quantify the environmental benefits of recycled PC (Polycarbonate) in the exterior case, the environmental impacts of 1 kg production of recycled PC and virgin PC were evaluated. The environmental impact on the abiotic depletion of the recycled PC is estimated to be 30% compared to the virgin PC, and the impacts on the other impact categories of the recycled PC were less than 5% of the virgin plastic. Sensitivity analysis was performed for 12 items including site data and assumptions made. The sensitivity of each item was less than 10%. The results of this study confirm that designing compact and light PBA, improving charging efficiency, and use of recycled plastic are important design factors to reduce the environmental impact of a charger.

Retrieval of Nitrogen Dioxide Column Density from Ground-based Pandora Measurement using the Differential Optical Absorption Spectroscopy Method (차등흡수분광기술을 이용한 지상기반 Pandora 관측으로부터의 대기 중 이산화질소 칼럼농도 산출)

  • Yang, Jiwon;Hong, Hyunkee;Choi, Wonei;Park, Junsung;Kim, Daewon;Kang, Hyeongwoo;Lee, Hanlim;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.981-992
    • /
    • 2017
  • We, for the first time, retrieved tropospheric nitrogen dioxide ($Trop.NO_2$) vertical column density (VCD) from ground-based instrument, Pandora, using the optical density fitting based on Differential Optical Absorption Spectroscopy (DOAS)in Seoul for the period from May 2014 to December 2014. The $Trop.NO_2$ VCDs retrieved from Pandora were compared with those obtained from Ozone Monitoring Instrument (OMI). A correlation coefficient (R) between those retrieved from Pandora and those obtained from OMI is 0.55. To compare with surface $NO_2$ VMRs obtained from in-situ, Trop. $NO_2$ VCDs retrieved from Pandora and those obtained from OMI are converted into $NO_2$ VMRs in boundary layer (BLH $NO_2$ VMRs) using data measured from Atmospheric Infrared Sounder (AIRS). Surface $NO_2$ VMRs obtained from in-situ range from 5.5 ppbv to 61.5 ppbv. BLH $NO_2$ VMRs retrieved from Pandora and OMI range from 2.1 ppbv to 44.2 ppbv and from 0.9 ppbv to 11.6 ppbv, respectively. The range of BLH $NO_2$ VMRs retrieved from OMI is narrower than that of BLH $NO_2$ VMRs retrieved from Pandora and surface $NO_2$ VMRs obtained from in-situ. There is a batter correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from Pandora (R= 0.50)than the correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from OMI (R = 0.36). This poor correlation is thought to be due to the lower near-surface sensitivity of the satellite-based instrument (OMI) than Pandora, the ground-based instrument.

A Study on Examples Applicable to Numerical Land Cover Map Data for Atmospheric Environment Fields in the Metropolitan Area of Seoul - Real Time Calculation of Biogenic CO2 Flux and VOC Emission Due to a Geographical Distribution of Vegetable and Analysis on Sensitivity of Air Temperature and Wind Field within MM5 - (수도권지역에서 수치 토지피복지도 작성을 통한 대기환경부문 활용사례 연구 - MM5내 기온 및 바람장의 민감도 분석과 식생분포에 기인한 VOC 배출량 및 CO2 플럭스의 실시간 산정을 중심으로 -)

  • Moon, Yun-Seob;Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.661-678
    • /
    • 2006
  • Products developed in this research is a software which can transfer the type of shape(.shp) into the type of ascii using the land cover data and the topography data in the metropolitan area of Seoul. In addition, it can calculate the $CO_2$ flux according to distribution of plants within the land cover data. The $CO_2$ flux is calculated by the experimental equation which is compose of the meteorological parameters such as the solar radiation and the air temperature. The net flux was shown in about $-19ton/km^2$ by removing $CO_2$ through the photosynthesis during daytime, and in 2 ton/km2 by producing it through the respiration during nighttime on 10 August 2004, the maximum day of air temperature during the period of 3yr(2001 to 2004), in the metropolitan area of Seoul. Spatial distribution of the air temperature and the wind field is simulated by substituting the middle classification of the land cover map data, upgraded by the Korean Ministry of Environment(KME), for the land-use data of the United States Geological Survey(USGS) within the Meteorological Mesoscale Model Version 5(MM5) on 10 August 2006 in the metropolitan area of Seoul. Difference of the air temperature between both data was shown in the maximum range of $-2^{\circ}C\;to\;2.9^{\circ}C$, and the air temperature due to the land use data of KME was higher than that of USGS in average $0.4^{\circ}C$. Also, those of wind vectors were meanly lower than that of USGS in daytime and nighttime. Furthermore, the hourly time series of Volatile Organic Components(VOCs) is calculated by using the Biosphere Emission and Interaction System Version 2(BEIS2) including the new land cover data and the meteorological parameters such as the air temperature and so]ar insolation. It is possible to calculate the concentration of ozone due to the biogenic emission of VOCs.

$NO_{2}$ Sensing Properties of Oxide Semiconductor Thick Films (산화물 반도체형 후막 가스 센서의 이산화질소 감지 특성)

  • Kim, Seung-Ryeol;Yun, Dong Hyun;Hong, Hyung-Ki;Kwon, Chul-Han;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.451-457
    • /
    • 1997
  • The thick films of oxide semiconductors such as $WO_{3}$, $SnO_{2}$ and ZnO for the $NO_{2}$ detection of sub-ppm range have been prepared and their characteristics were investigated. It is showed that the optimum operating temperatures of the sensors are $300^{\circ}C$ and $220{\sim}260^{\circ}C$ for $WO_{3}$-based and $SnO_{2}$-based thick films, and ZnO-based thick films, respectively. Since the resistance of ZnO-based thick films are extremely high($>10^{6}{\Omega}$), the signal to noise ratio was comparatively low. In order to determine the selectivity, the films are exposed to the interfering gases such as ozone, ammonia, methane and the mixture of carbon monoxide and propane. $WO_{3}$-ZnO(3 wt.%) and $SnO_{2}-WO_{3}$(3 wt.%) thick film sensors show high sensitivity, good selectivity, excellent reproducibility and the linearity of $NO_{2}$ concentration versus sensor resistance. The preliminary results clearly demonstrated that the sensor can be successfully applied for the detection of $NO_{2}$ in sub-ppm range.

  • PDF

A Quantitative Analysis of the Effect of Ocean Emissions on the Simulated Ozone Concentration in South Korea (국내 오존 모의 농도에 대한 해양 배출량의 영향 정량 분석)

  • Park, Jaehyeong;Jeon, Wonbae;Mun, Jeonghyeok;Kim, Dongjin
    • Journal of Environmental Science International
    • /
    • v.30 no.5
    • /
    • pp.413-424
    • /
    • 2021
  • In this study, we quantitatively analyze the effect of ocean emission sources on the simulated O3 concentrations in South Korea using the community multi-scale air quality (CMAQ) model. To analyze changes in O3 concentrations by ocean emissions, two different CMAQ simulations considering ocean emissions (OE case) and without considering ocean emissions (NE case) were conducted during the Korea-United States air quality (KORUS-AQ) campaign period (May-June 2016). The changes in the simulated O3 concentrations due to the effect of ocean emissions (OE case-NE case) appeared mostly in the ocean areas (+1.201 ppbv). The effect of ocean emissions was positive during the daytime (+1.813 ppbv), but negative during the nighttime (-0.612 ppbv). Analysis using the integrated process rate (IPR) confirmed that the increase or decrease in O3 concentration by ocean emissions was mainly due to chemical processes. Further analysis using the integrated reaction rate (IRR) showed that the daytime increase in O3 concentration was mainly attributable to the increased O3 production via O + O2 + M → O3 + M reaction as photolysis of NO2 increased due to the added ocean emissions. The nighttime decrease in O3 concentration was mainly due to the increased O3 titration by NO (NO + O3 → O2 + NO2) due to the increased NO emission. These results indicate that the changes in the concentration O3 in the sea area by the effect of ocean emissions are mainly due to increased NOx emissions. However, there could be a number of uncertainties in ocean emissions data used in this study, thus continuous comparative research using the most updated data will need to be carried out in the future.