Browse > Article
http://dx.doi.org/10.5322/JESI.2021.30.5.413

A Quantitative Analysis of the Effect of Ocean Emissions on the Simulated Ozone Concentration in South Korea  

Park, Jaehyeong (Division of Earth Environmental System, Pusan National University)
Jeon, Wonbae (Department of Atmospheric Sciences, Pusan National University)
Mun, Jeonghyeok (Division of Earth Environmental System, Pusan National University)
Kim, Dongjin (Division of Earth Environmental System, Pusan National University)
Publication Information
Journal of Environmental Science International / v.30, no.5, 2021 , pp. 413-424 More about this Journal
Abstract
In this study, we quantitatively analyze the effect of ocean emission sources on the simulated O3 concentrations in South Korea using the community multi-scale air quality (CMAQ) model. To analyze changes in O3 concentrations by ocean emissions, two different CMAQ simulations considering ocean emissions (OE case) and without considering ocean emissions (NE case) were conducted during the Korea-United States air quality (KORUS-AQ) campaign period (May-June 2016). The changes in the simulated O3 concentrations due to the effect of ocean emissions (OE case-NE case) appeared mostly in the ocean areas (+1.201 ppbv). The effect of ocean emissions was positive during the daytime (+1.813 ppbv), but negative during the nighttime (-0.612 ppbv). Analysis using the integrated process rate (IPR) confirmed that the increase or decrease in O3 concentration by ocean emissions was mainly due to chemical processes. Further analysis using the integrated reaction rate (IRR) showed that the daytime increase in O3 concentration was mainly attributable to the increased O3 production via O + O2 + M → O3 + M reaction as photolysis of NO2 increased due to the added ocean emissions. The nighttime decrease in O3 concentration was mainly due to the increased O3 titration by NO (NO + O3 → O2 + NO2) due to the increased NO emission. These results indicate that the changes in the concentration O3 in the sea area by the effect of ocean emissions are mainly due to increased NOx emissions. However, there could be a number of uncertainties in ocean emissions data used in this study, thus continuous comparative research using the most updated data will need to be carried out in the future.
Keywords
CMAQ; $O_3$ sensitivity; Ocean emission; KORUS-AQ; Process analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Oak, Y. J., Park, R. J., Schroeder, J. R., Crawford, J. H., Blake, D. R., Weinheimer, A. J., Woo, J. H., Kim, S. W., Yeo, H., Fried, A., Wisthaler, A., Brune, H. W., 2019, Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea, Elementa, 7(56), 1-15.
2 Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J., Rowe, C. M., 1985, Statistics for the evaluation and comparisons of models, J. Geophys. Res., 90(C5), 8995-9005.   DOI
3 Kang, J. E., Bang, J. H., Oh, I. B., Kim, Y. K., 2014, Estimation and variation of an exposed population of a vulnerable group to high ozone episodes, J. Environ. Sci. Int., 23(4), 697-705.   DOI
4 Kim, Y. P., Yeo, M. J., 2013, The trend of the concentrations of the criteria pollutants over Seoul, J. Korean Soc. Atmos. Environ., 29(4), 369-377.   DOI
5 Kim, C. H., Lee, S. H., Jang, M., Chun, S. N., Kang, S. J., Ko, K. K., Lee, J. J., Lee, H. J., 2020, A Study on statistical parameters for the evaluation of regional air quality modeling results -Focused on fine dust modeling-, Journal of Environmental Impact Assessment, 29(4), 272-285.   DOI
6 Kim, C. H., Kim, E. H., Bae, C. H., Cho, J. H., Kim, B. U., Kim, S. T., 2017b, Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory, Atmos. Chem. Phys., 17, 10315-10332.   DOI
7 Kim, J. H., Ghim, Y. S., Han, J. S., Park, S. M., Shin, H. J., Lee, S. B., Kim, J. S., Lee, G. W., 2018, Long-term trend analysis of Korean air quality and its implication to current air quality policy on ozone and PM10, J. Korean Soc. Atmos. Environ., 34(1), 1-15.   DOI
8 Kim, S. T., Bae, C. H., Kim, E. H., You, S. H., Bae, M. A., Lee, B. J., Seo, I. S., Lim, Y. J., Kim, B. U., Kim, H. C., Woo, J. H., 2017a, Domestic ozone sensitivity to chinese emissions inventories: A comparison between MICS-Asia 2010 and INTEX-B 2006, J. Korean Soc. Atmos. Environ., 34(5), 480-496.
9 Hurley, P. J., Blockley, A., Rayner, K., 2001, Verification of a prognostic meteorological and air pollution model for year-long predictions in the Kwinana industrial region of Western Australia, Atmos. Environ., 35, 1871-1880.   DOI
10 Kim, Y. K., Park, S. H., Kang, J. E., Song, S. K., 2010, Numerical simulation and process analysis using the MM5-CMAQ in Yangsan on high ozone days during spring and summer, J. Environ. Sci. Int., 19(3), 269-279.   DOI
11 Kitayama, K., Morino, Y., Yamaji, K., Chatani, S., 2019, Uncertainties in O3 concentrations simulated by CMAQ over Japan using four chemical mechanisms, Atmos. Environ., 198, 448-462.   DOI
12 Schroeder, J. R., Crawford, J. H., Ahn, J. Y., Chang, L. S., Fried, A., Walega, J., Weinheimer, A., Montzka, D. D., Hall, S. R., Ullmann, K., Wisthaler, A., Mikoviny, T., Chen, G., Blake, D. R., Blake, N. J., Hughes, S. C., Meinardi, S., Diskin, G., Digangi, J. P., Choi, Y. H., Pusede, S. E., Huey, G. L., Tanner, D. J., Kim, M., Wennberg, P., 2020, Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ), Elementa, 8(3), 1-21.   DOI
13 Lee, J. E., Jung, M. K., Choi, K. M., 2016, A Study of ozone variations in a semiconductor fabrication facility and office related to the ozone concentration in the outdoor air, J. Korean Soc. Occup. Environ. Hyg., 26(2), 188-197.   DOI
14 Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B., 2017, MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys., 17, 935-963.   DOI
15 National Institute of Environmental Research (NIER), 2020, National Air Pollutants Emission. NIER-GP2018-131, Incheon, Korea.
16 World Health Organization (WHO), 2003, Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide.
17 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G, Huang, X. Y., Wang, W., Powers, J. G., 2008, A Description of the advanced research WRF version 3, UCAR/NCAR, NCAR/TN-475+STR, Colorado.
18 Souri, A. H., Choi, Y. S., Jeon W. B., Woo, J. H., Zhang, Q., Kurokawa, J., 2017, Remote sensing evidence of decadal changes in major tropospheric ozone precursors over East Asia, J. Geophys. Res. Atmos., 122, 2474-2492.   DOI
19 Souri, A. H., Nowlan, C. R., Gonzalez Abad, G., Zhu, L., Blake, D. R., Fried, A., Weinheimer, A. J., Wisthaler, A., Woo, J. H., Zhang, Q., Chan Miller, C. E., Liu, X., Chance, K., 2020, An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia, Atmos. Chem. Phys., 20, 9837-9854.   DOI
20 Wang, P., Chen, Y., Hu, J., Zhang, H., Ying, Q, Attribution of tropospheric ozone to NOx and VOC Emissions: Considering ozone formation in the transition regime, 2019, Environ. Sci. Technol., 53, 1404-1412.   DOI
21 Ching, J., Byun, D. W., 1999, Introduction to the models-3 framework and the community multiscale air quality model (CMAQ).
22 An, H. J., Han, J. H., Lee, M. H., Kang, E. H., 2015, The long-term variations of ozone and nitrogen oxides in suwon city during 1991~2012, J. Korean Soc. Atmos. Environ., 31(4), 378-384.   DOI
23 Bae, C. H., Kim, B. U., Kim, H. C., Kim, S. T., 2018, Quantitative assessment on contributions of foreign NOx and VOC emission to ozone concentrations over Gwangyang bay with CMAQ-HDDM simulations, J. Korean Soc. Atmos. Environ., 34(5), 708-726.   DOI
24 Bae, M. A., Kim, H. C., Kim, B. Y., Kim, S. T., 2017, Development and application of the backward-tracking model analyzer to track physical and chemical processes of air parcels during the transport, J. Korean Soc. Atmos. Environ., 33(3), 217-232.   DOI
25 Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., Kumar, N., 2017, Recommendations on statistics and benchmarks to assess photochemical model performance, J. Air Waste Manag. Assoc, 67, 582-598.   DOI
26 Gipson, G. L., 1999. Process analysis. In: Byun, D. W., Ching, J. K.S. (Eds.), Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system, US EPA Report No. EPA/600/R-99/030, Office of Research and Development, Washington, DC.
27 European Environment Agency (EEA), 2013, EMEP/EEA air pollutant emission inventory guidebook.
28 Jung, Y. M., Lee, S. H., Lee, H. W., Jeon, W. B., 2012, Numerical study on the process analysis of ozone production due to emissions reduction over the Seoul metropolitan area, J. Environ. Sci. Int., 21(3), 339-349.   DOI