Browse > Article
http://dx.doi.org/10.7780/kjrs.2017.33.6.1.7

Retrieval of Nitrogen Dioxide Column Density from Ground-based Pandora Measurement using the Differential Optical Absorption Spectroscopy Method  

Yang, Jiwon (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Hong, Hyunkee (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Choi, Wonei (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Park, Junsung (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Kim, Daewon (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Kang, Hyeongwoo (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Lee, Hanlim (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Kim, Joon (Department of Atmospheric Sciences, Yonsei University)
Publication Information
Korean Journal of Remote Sensing / v.33, no.6_1, 2017 , pp. 981-992 More about this Journal
Abstract
We, for the first time, retrieved tropospheric nitrogen dioxide ($Trop.NO_2$) vertical column density (VCD) from ground-based instrument, Pandora, using the optical density fitting based on Differential Optical Absorption Spectroscopy (DOAS)in Seoul for the period from May 2014 to December 2014. The $Trop.NO_2$ VCDs retrieved from Pandora were compared with those obtained from Ozone Monitoring Instrument (OMI). A correlation coefficient (R) between those retrieved from Pandora and those obtained from OMI is 0.55. To compare with surface $NO_2$ VMRs obtained from in-situ, Trop. $NO_2$ VCDs retrieved from Pandora and those obtained from OMI are converted into $NO_2$ VMRs in boundary layer (BLH $NO_2$ VMRs) using data measured from Atmospheric Infrared Sounder (AIRS). Surface $NO_2$ VMRs obtained from in-situ range from 5.5 ppbv to 61.5 ppbv. BLH $NO_2$ VMRs retrieved from Pandora and OMI range from 2.1 ppbv to 44.2 ppbv and from 0.9 ppbv to 11.6 ppbv, respectively. The range of BLH $NO_2$ VMRs retrieved from OMI is narrower than that of BLH $NO_2$ VMRs retrieved from Pandora and surface $NO_2$ VMRs obtained from in-situ. There is a batter correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from Pandora (R= 0.50)than the correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from OMI (R = 0.36). This poor correlation is thought to be due to the lower near-surface sensitivity of the satellite-based instrument (OMI) than Pandora, the ground-based instrument.
Keywords
nitrogen dioxide; $NO_2$ vertical column density; Pandora; OMI; trace gas retrieval;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Venter, A.D., V. Vakkari, J.P. Beukes, P.G. Van Zyl, H. Laakso, D. Mabaso, P. Tiitta, M. Josipovic, M. Kulmala, J.J. Pienaar, and L. Laakso, 2012. An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa, South African Journal of Science, 108(9-10): 1-10.
2 Yun, S., H. Lee, J. Kim, U. Jeong, S.S. Park, and J. Herman, 2013. Inter-comparison of $NO_{2}$ column densities measured by Pandora and OMI over Seoul, Korea, Korean Journal of Remote Sensing, 29(6): 663-670.   DOI
3 Ackermann-Liebrich, U., P. Leuenberger, J. Schwartz, C. Schindler, C. Monn, G. Bolognini, J.P. Bongard, O. Brandli, G. Domenighetti, S. Elsasser, and L. Grize, 1997. Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team, American Journal of Respiratory and Critical Care Medicine, 155(1): 122-129.   DOI
4 Al-Jeelani, H.A., 2014. Diurnal and seasonal variations of surface ozone and its precursors in the atmosphere of Yanbu, Saudi Arabia, Journal of Environmental Protection, 5(5): 408-422.   DOI
5 Aumann, H.H., M.T. Chahine, C. Gautier, M.D. Goldberg, E. Kalnay, L.M. McMillin, H. Revercomb, P.W. Rosenkranz, W.L. Smith, D.H. Staelin, and L.L. Strow, 2003. AIRS/ AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE Transactions on Geoscience and Remote Sensing, 41(2): 253-264.   DOI
6 Baek, K.H. and J.H. Kim, 2010. Analysis of Characteristics of Air Pollution Over Asia with Satellite-derived $NO_2$ and HCHO using Statistical Method, Atmosphere, 20(4): 495-503.
7 Boersma, K.F., H.J. Eskes, and E.J. Brinksma, 2004. Error analysis for tropospheric $NO_2$ retrieval from space, Journal of Geophysical Research: Atmospheres, 109(D4).
8 Bucsela, E.J., E.A. Celarier, M.O. Wenig, J.F. Gleason, J.P. Veefkind, K.F. Boersma, and E.J. Brinksma, 2006. Algorithm for $NO_2$ vertical column retrieval from the Ozone Monitoring Instrument, IEEE Transactions on Geoscience and Remote Sensing, 44: 1245-1258.   DOI
9 Boersma, K.F., H.J. Eskes, J.P. Veefkind, E.J. Brinksma, R.J. Van Der A, M. Sneep, G.H.J. Van Der Oord, P.F. Levelt, P. Stammes., J.F. Gleason, and E.J. Bucsela, 2006. Near-real time retrieval of tropospheric $NO_2$ from OMI, Atmospheric Chemistry and Physics Discussions, 6(6): 12301-12345.   DOI
10 Boersma, K.F., H.J. Eskes, J.P. Veefkind, E.J. Brinksma, R.J. Van Der A, M. Sneep, G.H.J. Van Den Oord, P.F. Levelt, P. Stammes, J.F. Gleason, and E.J. Bucsela, 2007. Near-real time retrieval of tropospheric $NO_{2}$ from OMI, Atmospheric Chemistry and Physics, 7(8): 2103-2118.   DOI
11 Cede, A., J. Herman, A. Richter, N. Krotkov, and J. Burrows, 2006. Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode, Journal of Geophysical Research: Atmospheres, 111(D5).
12 Chahine, M.T., T.S. Pagano, H.H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E.J. Fetzer, M. Goldberg, and C. Gautier, 2006. AIRS: Improving weather forecasting and providing new data on greenhouse gases, Bulletin of the American Meteorological Society, 87(7): 911-926.   DOI
13 Chong, H., J. Kim, W. Kim, H. Lee, J. Kim, M. Choi, U. Jeong, J. An, J. Park, J. Hong, and S. Kim, 2016. Pandora 분광계를 이용한 관측 지점 인근의 대류권 이산화질소 농도 특성 분석, Proc. of Korean Meteorological Society symposium, Busan, Apr. 28-29, pp. 175-176.
14 Fayt, C., I. De Smedt, V. Letocart, A. Merlaud, G. Pinardi, M. Van Roozendael, and M.V.A.N. Roozendael, 2011. QDOAS Software user manual, Belgian Institute for Space Aeronomy, 1.
15 Kim, D., H. Lee, H. Hong, W. Choi, Y.G. Lee, and J. Park, 2017. Estimation of surface NO2 volume mixing ratio in four metropolitan cities in Korea using multiple regression models with OMI and AIRS Data, Remote Sensing, 9(6): 627.   DOI
16 Herman, J., A. Cede, E. Spinei, G. Mount, M. Tzortziou, and N. Abuhassan, 2009. $NO_2$ column amounts from ground-based Pandora and MFDOAS spectrometers using the directsun DOAS technique: Intercomparisons and application to OMI validation, Journal of Geophysical Research: Atmospheres, 114(D13).
17 James Gauderman, W., R.O.B. McConnell, F. Gilliland, S. London, D. Thomas, E. Avol, H. Vora, K. Berhane, E.B. Rappaport, F. Lurmann, and H.G. Margolis, 2000. Association between air pollution and lung function growth in southern California children, American Journal of Respiratory and Critical Care Medicine, 162(4): 1383-1390.   DOI
18 Kim, D., H. Hong, W. Choi, J. Park, J. Yang, J. Ryu, and H. Lee, 2017. Estimation of surface nitrogen dioxide mixing ratio in Seoul using the OMI satellite data, Korean Journal of Remote Sensing, 33(2): 135-147 (in Korean with English abstract).   DOI
19 Kraus, S., 2006. DOASIS: A framework design for DOAS, Shaker.
20 Lee, C.K., A. Richter, J.P. Burrows, and Y.J. Kim, 2008. Satellite (SCIAMACHY) measurements of tropospheric $SO_2$ and $NO_2$: seasonal trends of $SO_2$ and $NO_2$ levels over northeast Asia in 2006, Journal of Korean Society for Atmospheric Environment, 24(2): 176-188.   DOI
21 Lee, H., 2013. Comparison of Nitrogen Dioxide Retrieved by MAX-DOAS and OMI measurements in Seoul, Korean Journal of Remote Sensing, 29(2): 235-241 (in Korean with English abstract).   DOI
22 Panella, M., V. Tommasini, M. Binotti, L. Palin, and G. Bona, 2000. Monitoring nitrogen dioxide and its effects on asthmatic patients: Two different strategies compared, Environmental monitoring and assessment, 63(3): 447-458.   DOI
23 Leue, C., M. Wenig, T. Wagner, O. Klimm, U. Platt, and B. Jahne, 2001. Quantitative analysis of NO x emissions from Global Ozone Monitoring Experiment satellite image sequences, Journal of Geophysical Research: Atmospheres, 106(D6): 5493-5505.   DOI
24 Levelt, P.F., E. Hilsenrath, G.W. Leppelmeier, G.H. van den Oord, P.K. Bhartia, J. Tamminen, J.F. de Haan, and J.P. Veefkind, 2006. Science objectives of the ozone monitoring instrument, IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1199-1208.   DOI
25 Martin, R.V., K. Chance, D.J. Jacob, T.P. Kurosu, R.J. Spurr, E. Bucsela, J.F. Gleason, P.I. Palmer, I. Bey, A.M. Fiore, and Q. Li, 2002. An improved retrieval of tropospheric nitrogen dioxide from GOME, Journal of Geophysical Research: Atmospheres, 107(D20).
26 Richter, A. and J.P. Burrows, 2002. Tropospheric NO2 from GOME measurements, Advances in Space Research, 29(11): 1673-1683.   DOI
27 Schindler, C., U. Ackermann-Liebrich, P. Leuenberger, C. Monn, R. Rapp, G. Bolognini, J.P. Bongard, O. Brändli, G. Domenighetti, W. Karrer, and R. Keller, 1998. Associations between Lung Function and Estimated Average Exposure to $NO_2$ in Eight Areas of Switzerland, Epidemiology, 9(4): 405-411.   DOI
28 Smith, B.J., M. Nitschke, L.S. Pilotto, R.E. Ruffin, D.L. Pisaniello, and K.J. Willson, 2000. Health effects of daily indoor nitrogen dioxide exposure in people with asthma, European Respiratory Journal, 16(5): 879-885.   DOI
29 Uberhuber, C., 2002. Nummerisches Rechnen, Informatik Handbuch, Hanser Verlag.