• Title/Summary/Keyword: Oxytetracycline

Search Result 235, Processing Time 0.026 seconds

Chemicals for the Control of Streptomycin-resistant Tobacco Hollow Stalk Pathogen, Erwinia carotouora subsp. carotovora (Streptomycin 내성 담배줄기속썩음병균 방제약제 선발)

  • 강여규
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 1996
  • Chemicals including antibiotics and bactericides were screened for suppression of streptomycin-resistant Erwinia cmutouom subsp. cmutovom (Ecc) strains in laboratory and field conditions. Oxytetracycline, ethoquinolac and dichlorophen suppressed the growth of streptomycin-resistant Ecc strains in vitro. Fractional inhibitory concentration (FIC) indices of oxytetracycline and ethoquinolac mixed with streptomycin against the Ecc strains were equal to and less than one, respectively. Consequently the efficacy of those chemicals in mixture with sorptomycin were non-antagonistic But that of dichlorophen mixed with streptomycin was more than one, therefore the efficacy of the mixture was antagonistic. Spray of oxyteoucycline, ethoquinolac and agrimycin-100 on the topped burley tobacco plants was efficacious in reducing tobacco hollow stalk at the same level of sorptomycin treatment in three-year field trials, which suggests that those are promising chemicals to be alternative to streptomycin for control of tobacco hollow stalk.

  • PDF

Responses of Castanea crenata to Injection Wound for Oxytetracycline(OTC) (옥시테트라사이크린(OTC) 수간주입 상처에 대한 밤나무의 반응)

  • Cha, Byeong-Jin;Yun, Jeong-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Chestnut(Castanea crenata) were trunk-injected by two methods to check the changes around the injection wound. In September 1993, high concentration of oxytetracycline(OTC) was injected through the injection wound of 1cm diameter and low concentration of OTC through 0.5cm diameter. Trunk diameter of injected trees ranged from 10cm to 20cm. All trees were in their vigorous conditions. Tree reaction was examined in June, 1994. None of them showed any sign of decay by the time. However, under the bark, sapwood was remarkably discolored. But, more severe discoloration was found in 1cm-injection wound than in 0.5cm one. Sapwood of some trees split from the injection wound, and the split was longer in 1cm-injection wounded trees than in 0.5cm trees. From the split, callus grew out and the split was closing. In this kind of trunk injection, the damage was more severe in 1cm-injection wound than in 0.5cm-injection wound.

  • PDF

A study on The Effect of Antibiotics Usage too The Efficiency of Biological Piggery Wastewater Treatment (축산물에 사용되는 항생제가 축산폐수의 처리효율에 미치는 영향)

  • Cho, Mi Kyeong;Tran, Hung Thuan;Kim, Dae Hee;Jia, Yu Hong;Oh, Se Jin;Ann, Dae Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.123-133
    • /
    • 2007
  • The presence of antibiotics in the wastewater from livestock farm due to its over-application should be concerned because they could change microbial ecology, increase the proliferation of antibiotic resistant pathogens, provoke toxic effect on aquatic species. In addition, these antibiotics can cause negative effect on the performance of biological wastewater treatment due to its antibacterial properties. In this study, our aim is to evaluate the effect of some common used antibiotic in Korea piggery farm such as oxytetracycline (OTC) to nitrification efficiency as well as organic compounds removal rate in biological system for treating piggery wastwater. The experiment was conducted in aeration batch reactor and lab-scale $A_2/O$(Anoxic-Anoxic-Oxic) system. From this study, it would be suggested that the piggery wastewater characterization should be examined in order to assess the fraction of common used antibiotics. The alternative treatment processes for piggery wastewater having high-strength antibiotics might be suggested in the future work.

  • PDF

In vitro Antibacterial and Synergistic Activity of an Ecklonia cava Extract against Anti biotic-Resistant Streptococcus parauberis

  • Eom, Sung-Hwan;Santos, Jeniel A.;Kim, Ji-Hoon;Jung, Won-Kyo;Kim, Do-Hyung;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • In an effort to discover alternative phytotherapeutic antimicrobial agents to combat Streptococcus parauberis, a fish pathogenic bacterium, we evaluated the antibacterial activity of seaweed extracts in vitro. A methanolic extract of Ecklonia cava exhibited strong antibacterial activity against S. parauberis isolated from olive flounder Paralichthys olivaceus. Furthermore, the n-hexane soluble (Hexane) fraction of the E. cava methanolic extract exhibited the greatest antibacterial effect on S. parauberis strains with a minimum inhibitory concentration (MIC) ranging from 256 to $1,024{\mu}g/mL$. In addition, the MIC values of oxytetracycline against antibiotic-resistant S. parauberis were markedly reduced up to 64-fold in combination with the Hexane fraction, suggesting that the antibacterial activity of the antibiotic was restored when combined with the Hexane fraction. The interaction between both antibiotics and the Hexane fraction was assessed by the fractional inhibitory concentration (FIC) index. The Hexane fraction and oxytetracycline combination against antibiotic-resistant S. parauberis strains resulted in a median ${\sum}FIC$ range of 0.502 to 0.516. Thus, the synergistic ranges of median ${\sum}FIC$ < 1 were observed for all combinations of the Hexane fraction and oxytetracycline against S. parauberis. To the best of our knowledge, this is the first report indicating the efficacy of an E. cava extract against fish pathogenic bacterium S. parauberis.

Transformation Conditions of Bacillus subtilis by Streptomyces rimosus Plasmid DNA (Streptomyces rimosus Plasmid DNA에 의한 Bacillus subtilis의 형질전환 조건)

  • Hong, Yong-Ki;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.75-79
    • /
    • 1983
  • To exploit a suitable vector and recipient strain for molecular cloning in Bacillus subtilis, oxytetracycline-resistant plasmic DNA has been prepared from Streptomyces rimosus by phenol-buffer extraction of lysozyme-lysed cells and introduced into B. subtilis KPM 60 [St $r^{R}$-mutant of RM 125 (leu A8, arg 15, hsm $M^{-10}$ , hsr $M^{-10}$ )] by transformation. Oxitetracycline-resistant plasmid was well transferred into B. subtilis KPM 60 with average frequency of 10$^{-4}$ per $\mu\textrm{g}$ of DNA. The highest frequency of plasmid transformation was obtained after 3 hours incubation of recipient cells in the growth medium and 30 to 60 minutes incubation in the competence medium, and then 20 minutes contact of DNA and host cells. Optimum pH for competence was 7.5, and optimum temperature for transformation was 2$0^{\circ}C$.>.

  • PDF

Veterinary antibiotic oxytetracycline's effect on the soil microbial community

  • Danilova, Natalia;Galitskaya, Polina;Selivanovskaya, Svetlana
    • Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.72-80
    • /
    • 2020
  • Background: Antibiotics are widely used to treat animals from infections. After fertilizing, antibacterials can remain in the soil while adversely affecting the soil microorganisms. The concentration of oxytetracycline (OTC) in the soil and its effect on the soil microbial community was assessed. To assess the impact of OTC on the soil microbial community, it was added to the soil at concentrations of 50, 150, and 300 mg kg-1 and incubated for 35 days. Results: The concentration of OTC added to the soil decreased from 150 to 7.6 mg kg-1 during 30 days of incubation, as revealed by LC-MS. The deviations from the control values in the level of substrate-induced respiration on the 5th day of the experiment were, on average, 26, 68, and 90%, with OTC concentrations at 50, 150, and 300 mg kg-1, respectively. In samples with 150 and 300 mg kg-1 of OTC, the number of bacteria from the 3rd to 14th day was 2-3 orders of magnitude lower than in the control. The addition of OTC did not affect the fungal counts in samples except on the 7th and 14th days for the 150 and 300 mg kg-1 contaminated samples. Genes tet(M) and tet(X) were found in samples containing 50, 150, and 300 mg kg-1 OTC, with no significant differences in the number of copies of tet(M) and tet(X) genes from the OTC concentration. Conclusions: Our results showed that even after a decrease in antibiotic availability, its influence on the soil microbial community remains.

Experimental study of degradation and biodegradability of oxytetracycline antibiotic in aqueous solution using Fenton process

  • Zouanti, Mustapha;Bezzina, Mohamed;Dhib, Ramdhane
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.316-323
    • /
    • 2020
  • The degradation of aqueous oxytetracycline (OTC) from an aqueous solution antibiotic using H2O2/Fe2+ process was studied in one 1 L batch chemical reactor. The extent of OTC degradation (20 mg/L) was investigated from a known initial pH solution, temperature and the type of catalyst (Fe2+, Fe3+) and for various initial concentrations of OTC, H2O2 and Fe2+. The degradation efficiency achieved was found to be very important (90.82% and 90.63%) at initial pH solution of 3 and 4, respectively. However, the type of catalyst and the reaction temperature had a slight impact on the final degradation of OTC. The results showed that the OTC removal increased with increasing initial H2O2 concentration in the range of 70 to 150 mg/L and initial Fe2+ concentrations in the range of 2 to 5 mg/L. The highest degradation efficiency obtained at ambient temperature was 90.95% with initial concentration of OTC of 10 mg/L, H2O2 = 150 mg/L and Fe2+ = 5 mg/L. Moreover, biodegradability improved from 0.04 to 0.36 and chemical oxygen demand degradation was 78.35% after 60 min of treatment. This study proved that Fenton process can be used for pretreatment of wastewater contaminated by OTC before a biological treatment.

Pharmacokinetics of Oral Administration of Oxytetracycline in Eel, Anguilla japonica (Oxytetracycline의 경구 투여에 따른 뱀장어 체내 약물동태학적 특성)

  • Kim, Jin-Do;Seo, Jung-Soo;Kim, Ju-Wan;Lee, Joo-Seok;Jung, Sung-Hee;Ji, Bo-Young;Kim, Jin-Woo;Kim, Eung-Oh
    • Journal of fish pathology
    • /
    • v.21 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • Oxytetracycline (OTC) has been widely used in eel culture as a therapeutic and prophylactic agent because of its broad-spectrum activity against gram-positive and -negative bacteria. The oral treatment dosage of OTC approved for the treatment of edwardsiellosis, furunculosis and vibriosis in eel is 50 mg/kg/day for 3-7 days in Korea. To determine new optimum dose of OTC in eel, the pharmacokinetics of OTC after single oral administration (100 mg/kg B.W., 200 mg/kg B.W.) in cultured eel, Anguilla japonica was examined. In oral dosage of 100 and 200 mg/kg body weight, the highest plasma concentrations of OTC were 1.19±0.42 ㎍/㎖ and 2.69±0.57 ㎍/㎖, respectively. Plasma concentrations of OTC were not detected after 720 h post-dose in all experiments. The kinetic profile of absorption, distribution and elimination of OTC in plasma wwas calculated fitting to a 1- and 2-compartment model by WinNonlin program. The following parameters were obtained for a single dosage of 100 and 200 mg/kg respectively: 1-compartment model, AUC= 82.48 and 432.68 ㎍*h/㎖, Tmax= 3.93 and 14.24 hr, Cmax= 0.94 and 2.34 ㎕/㎖; 2-compartment model, AUC= 448.73 and 530.65 ㎍*h/㎖, Tmax= 6.37 and 8.96 hr, Cmax= 0.90 and 3.21 ㎕/㎖.