• 제목/요약/키워드: Oxygen-plasma treatment

검색결과 331건 처리시간 0.024초

Optimized O2 Plasma Surface Treatment for Uniform Sphere Lithography on Hydrophobic Photoresist Surfaces

  • Yebin Ahn;Jongchul Lee;Hanseok Kwon;Jungbin Hong;Han-Don Um
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제37권2호
    • /
    • pp.188-194
    • /
    • 2024
  • This paper introduces an optimized oxygen (O2) plasma surface treatment technique to enhance sphere lithography on hydrophobic photoresist surfaces. The focus is on semiconductor manufacturing, particularly the creation of finer structures beyond the capabilities of traditional photolithography. The key breakthrough is a method that makes substrate surfaces hydrophilic without altering photoresist patterns. This is achieved by meticulously controlling the O2 plasma treatment duration. The result is the consistent formation of nano and microscale patterns across large areas. From an academic perspective, the study deepens our understanding of surface treatments in pattern formation. Industrially, it heralds significant progress in semiconductor and precision manufacturing sectors, promising enhanced capabilities and efficiency.

Effect of O2 Plasma Treatment on Electrochemical Performance of Supercapacitors Fabricated with Polymer Electrolyte Membrane (고분자 전해질막으로 제조한 슈퍼커패시터의 전기화학적 특성에 대한 산소 플라즈마 처리 영향)

  • Moon, Seung Jae;Kim, Young Jun;Kang, Du Ru;Lee, So Youn;Kim, Jong Hak
    • Membrane Journal
    • /
    • 제32권1호
    • /
    • pp.43-49
    • /
    • 2022
  • Solid-state supercapacitors with high safety and robust mechanical properties are attracting global attention as next-generation energy storage devices. As an electrode of a supercapacitor, an economical carbon-based electrode is widely used. However, when an aqueous electrolyte is introduced, the charge transfer resistance increases because the interfacial contact between the hydrophobic electrode surface and aqueous electrolyte is not good. In this regard, we propose a method to obtain higher electrochemical performance based on improved interfacial properties by treating the electrode surface with oxygen plasma. The surface hydrophilization induced by the enriched oxygen functionalities was confirmed by the contact angle measurement. As a result, the degree of hydrophilization was easily adjusted by controlling the power and duration of the oxygen plasma treatment. As the electrolyte of the supercapacitor, PVA/H3PO4, which is a typical solid-state aqueous electrolyte, was used. Free-standing membranes of PVA/H3PO4 electrolyte were prepared and then pressed onto the electrode. The optimal condition was to perform oxygen plasma treatment for 5 seconds with a low power of 15 W, and the energy density of the supercapacitor increased by about 8%.

A Study on the Characteristic Analysis of ITO and the Fabrication of Organic Light Emitting Diodes by Variation of Plasma Condition (플라즈마 조건 변화에 따른 ITO 특성 분석 및 유기발광소자의 제작에 관한 연구)

  • Kim, Joong-Yeon;Kang, Seong-Jong;Cho, Jae-Young;Kim, Tae-gu;Oh, Hwan-Sool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제18권10호
    • /
    • pp.941-944
    • /
    • 2005
  • In this experiment, OLEDs(Organic Light Emitting Diodes) was fabricated to confirm effect of Plasma treatment which increase the hole injection characteristic from anode. Device structure was $ITO/2-TNATA/{\alpha}-NPD/DPVBi/BAlq/Alq_3/Al:Li$. We used DPVBi (4, 4 - Bis (2,2-diphenylethen-1-yls) - Biphenyl) as a blue emitting material. To optimize the process condition of plasma treatment, we used 2 gases of the oxygen and nitrogen gas under 120 mTorr with 100 W, 200 W, and 400 W plasma power. The current efficiency of $N_2$ plasma is more efficient than that of $O_2$ plasma. At $1000 cd/m^2$, we obtained the maximum current efficiency of 6.45 cd/A using $N_2$ gas with 200 W plasma power.

The Effect of Plasma on Hydrophilic Surface Modification of LDPE (저밀도 폴리에틸렌의 친수성 표면개질에 미치는 플라즈마의 영향)

  • Hwang, Seung-No;Jeon, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • 제9권3호
    • /
    • pp.383-387
    • /
    • 1998
  • The effect of hydrophilic surface modification of low density polyethylene(LDPE) byt the plasma gas($O_2$, $N_2$, and $O_2/N_2$) was investigated from the point of view of the functionalities of the generated LDPE surfaces and the contact angle. By virtue of x-ray photoelectron spectra(XPS) and attenuated total reflectance(FT-IR ATR) analysis, the LDPE surfaces treated with plasma were generated with oxygen functionalities of carbonyl, carboxyl, and the like, nitrogen functionalities by nitrogen plasma and mixing of nitrogen and oxygen plasma treatment were identified with. It was found that nitrogen plasma treatment showed with minimum value at contact angle for rf-power and treatment time, we had obtained optimum condition for hydrophilic surface modification at composite parameter, [(W/FM)t] 520~550GJs/kg.

  • PDF

Influence of Inductive Coupled Plasma Treatment and SnO2 Deposition on the Properties of Polycarbonate (유도결합플라즈마 표면 처리 및 SnO2 증착에 따른 폴리카보네이트 특성 연구)

  • Eom, Tae-Young;Choi, Dong-Hyuk;Son, Dong-Il;Eom, Tae-Yong;Kim, Daeil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제31권3호
    • /
    • pp.156-159
    • /
    • 2018
  • Inductively coupled plasma (ICP) treatment with argon and a mixture of argon and oxygen gases has been used to modify the surface of polycarbonate (PC) substrates. The results showed that the surface contact angle was inversely proportional to the plasma discharge power and that the mixed-gas plasma (gas flow 10:10 sccm, discharge power 60 W) decreased the surface contact angle as low as $18.3^{\circ}$, indicating a large increase in the surface hydrophilicity. In addition, $SnO_2$ thin films deposited on the PC substrate effectively enhanced the ICP plasma treatment, and could also enhance the usefulness of PC in the inner parts of automobiles.

Performance Enhancement due to Oxygen Plasma Treatment on the Gate Dielectrics of OTFTs (게이트 절연막의 $O_2$플라즈마 처리에 의한 펜타센 OTFT의 성능 개선)

  • 이명원;김광현;허영헌;안정근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제40권7호
    • /
    • pp.494-498
    • /
    • 2003
  • In this paper, the plasma treatment on gate surface has been applied prior to deposition of pentacene and the effects on performance were investigated. The Plasma treatment produced the mobility of 0.05$\textrm{cm}^2$/V.sec which is 10 times larger than the non-treated. The resistance was also reduced from 400K$\Omega$ to 50K$\Omega$. In addition, the standard deviation of performance parameters variation was reduced with the plasma exposure time, which implies that plasma treatment makes the gate surface states be uniform across the whole wafer area. The performance parameters were increased with the exposure time up to 5min, after which they degraded again. Therefore, the optimal exposure time was found to be 5min.

Low Temperature Plasma Treatment of Linseed Oil for Immobilization of Silica as Flame-resistant Material (방염용 실리카의 고정화를 위한 아마인유의 저온플라즈마처리)

  • Seo, Eun-Deock
    • Textile Coloration and Finishing
    • /
    • 제24권4호
    • /
    • pp.313-320
    • /
    • 2012
  • For the preparation of hardened films which can be applied as a binder for flame-resistant materials such as silica, linseed oil was subjected to a low temperature plasma treatment with argon, or oxygen gas. The film was produced much faster than so-called drying of oil in air. The SEM analysis for silica particles embedded in the hardened film after plasma treatment showed that the silica particles were immobilized on substrate and were evenly dispersed. The FT-IR spectral analysis for the plasma-treated linseed oil films demonstrated that the radicals which were formed during the plasma treatments caused the linseed oil to be cross-linked, and the plasmas attacked carbon chains of the oil randomly without focusing on specific vulnerable bonds such carbon double and carbonyl bonds intensively unless exposure times of the plasmas were prolonged too much, while the cross-linking of the air-dried film was considered to occur at the well-known typical sites, i.e., carbon-carbon double bond and ${\alpha}$-methylene carbon. Burning times, as a measure of flame/fire resistance, of silica-filled cellulose substrates, increased with increasing contents of silica.

Effect of O2 Plasma Treatments of Carbon Supports on Pt-Ru Electrocatalysts

  • Park, Soo-Jin;Park, Jeong-Min;Seo, Min-Kang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.331-334
    • /
    • 2010
  • In the present study, carbon supports mixed with purified multi-walled carbon nanotubes (MWNTs) and carbon blacks (CBs) were used to improve the cell performance of direct methanol fuel cells (DMFCs). Additionally, the effect of $O_2$ plasma treatment on CBs/MWNTs supports was investigated for different plasma RF powers of 100, 200, and 300 W. The surface and structural properties of the CBs/MWNTs supports were characterized by FT-IR, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrocatalytic activity of PtRu/CBs/MWNTs catalysts was investigated by cyclic voltammetry measurement. In the experimental results, the oxygen functional groups of the supports were increased with increasing plasma RF power, while the average Pt particle size was decreased owing to the improvement of dispersibility of the catalysts. The electrochemical activity of the catalysts for methanol oxidation was gradually improved by the larger available active surface area, itself due to the introduction of oxygen functional groups. Consequently, it was found that $O_2$ plasma treatments could influence the surface properties of the carbon supports, resulting in enhanced electrocatalytic activity of the catalysts for DMFCs.

Surface modification for block copolymer nanolithographyon gold surface

  • Hwang, In-Chan;Bang, Seong-Hwan;Lee, Byeong-Ju;LeeHan, Bo-Ram;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Block copolymer lithography has attracted great attention for emerging nanolithography since nanoscaleperiodic patterns can be easily obtained through self-assembly process without conventional top-down patterning process. Since the morphologies of self-assembled block copolymer patterns are strongly dependent on surface energy of a substrate, suitable surface modification is required. Until now, the surface modification has been studied by using random copolymer or self-assembled mono layers (SAMs). However, the research on surface modifications has been limited within several substrates such as Si-based materials. In present study, we investigated the formation of block copolymer on Au substrate by $O_2$ plasma treatment with the SAM of 3-(p-methoxy-phenyl)propyltrichloro-silane [MPTS, $CH_3OPh(CH_2)_3SiCl_3$]. After $O_2$ plasma treatment, the chemical bonding states of the surface were analyzed by X-ray photoelectron spectroscopy (XPS). The static contact angle measurement was performed to study the effects of $O_2$ plasma treatment on the formation of MPTS monolayer. The block copolymer nanotemplates formed on Au surface were analyzed by scanning electron microscopy. The results showed that the ordering of self-assembled block copolymer pattern and the formation of cylindrical nano hole arrays were enhanced dramatically by oxygen plasma treatment. Thus, the oxidation of gold surface by $O_2$ plasma treatment enables the MPTS to form the monolayer assembly leading to surface neutralization of gold substrates.

  • PDF

Improvement of Printing Properties of PET Micro Filament Fabrics Using Low Temperature Plasma Technology(I) (저온 plasma 기술에 의한 PET 극세사직물의 날염성 개선(I))

  • 조규민;이종훈
    • Textile Coloration and Finishing
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 1995
  • In order to improve dyeability of poly(ethylene terephthalate)(PET) micro filament fabrics, the effect of the prior oxygen low temperature plasma on the subsequent dyeing(deep dyeing, printing) was examined in various conditions. The apparent concentration of dyed PET micro filament fabrics was increased by $O_{2}$plasma treatment. Higher discharge power levels and higher reactor pressure values created more significant effect. The wettability was significantly increased by $O_{2}$ plasma treatment. Therefore, it is predicted that introducing hydrophilic group on the surface of material can improve the apparent concentration of PET micro filament fabrics.

  • PDF