• Title/Summary/Keyword: Oxygen-plasma effect

Search Result 309, Processing Time 0.021 seconds

Rapid Grain Growth of $SrBi_2Nb_2O_9$ Thin Films for Improving Programming Characteristics of Ferroelectric Gate Field Effect Transistor (강유전체게이트 전계효과 트랜지스터의 정보저장특성 향상을 위한 $SrBi_2Nb_2O_9$ 박막의 급속 결정성장방법)

  • Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.339-343
    • /
    • 2005
  • Pt-$SrBi_2Nb_2O_9(SBN)-Pt-Y_2O_3-Si$ gate field effect transistors (MFMISFETs) have been fabricated and the SBN thin films are rapid thermal annealed in oxygen plasma. The grain size of the SBN becomes 4 times much larger than that of furnace annealed SBN films even at the same annealing temperature of $700^{\circ}C$, remnant polarization value of Pt-SBN-Pt is improved by 2 times. Using the rapid grain growth of SBN for the MFM-ISFET, memory window and programming characteristics of on/off states are fairly well improved.

  • PDF

Effect of Caffeic Acid on the Production of Reactive Oxygen Species in Raw 264.7 Cells (Raw 264.7 세포에서 유해산소 생성에 미치는 Caffeic Acid의 영향)

  • Choi, Byung-Chul
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.441-445
    • /
    • 2008
  • To investigate effect of caffeic acid on the intracellular reactive oxygen species production, we used DHE for intracellular superoxide anion production, DCF for intracellular ${H_2}{O_2}$ production and DHR for intracellular hydroperoxide production in Raw 264.7 cells. DPPH assay showed that antioxidant activity of caffeic acid with 39.5 ${\mu}M$ of ${IC}_{50}$ values was similar to that of ascorbic acid with 41.3 ${\mu}M$ of ${IC}_{50}$ values. Caffeic acid dose-dependently inhibited silica-induced ${H_2}{O_2}$ and hydroperoxide production but did not affect superoxide anion production in Raw 264.7 cells, which suggest that antioxidant effect of caffeic acid acts on the post-step of superoxide anion. On the other hand, caffeic acid showed a potent antioxidant effect in $lCuSO_4$-induced lipid peroxidation. Furthermore, plasma superoxide dismutase activity (3.43${\pm}$0.23 U/ml) in 10 mg/kg caffeic acid-fed mice was significantly higher than that (2.32${\pm}$0.24 U/ml) of control. From the above results, it is referred that caffeic acid appears to have potent anti-oxidant activity in both cell system and in vivo system.

The Effect of Human Recombinant Superoxide Dismutase Conjugated with Polyethylene Glycol on the Hepatic Toxicity of Acetaminophen (HrSOD-폴리에칠렌 접합체의 아세트아미노펜 간독성에 미치는 영향)

  • Yong, Chul-Soon;Park, Kyong-Ah;Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.313-322
    • /
    • 1995
  • The covalent conjugation of human recombinant superoxide dismutase (hrSOD) with trichloros-triazine activated polyethylene glycol (PEG) 5000 formed soluble conjugates with molecular weight of 92KD, which retained $90{\sim}98%$ of original activity with a markedly prolonged plasma half-life of enzyme activity. The effect of hrSOD-PEG conjugates on acetaminophen (ACP)-induced hepatotoxicity was tested in male rats which were pretreated with 3-methylcholanthrene. HrSOD-PEG conjugates inhibited the hepatotoxicity produced by ACP, on the other hand, native hrSOD had no protective effect. The above results indicated that oxygen radicals might participate in the mechanism of the ACP-induced hepatotoxicity and that polymer conjugated-protein drugs with prolonged half-lives could be employed as an effective therapeutic agent.

  • PDF

Influence of Inductively Coupled Oxygen Plasma on the Surface of Poly(ether sulfone)

  • Lee, Do Kyung;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.214-217
    • /
    • 2022
  • The effect of inductively coupled plasma (ICP) treatment with O2 gas on the surface properties of poly(ether sulfone) (PES) was investigated. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical characteristics of the O2 plasma-treated PES films. The surface roughness of the pristine and O2 plasma-treated PES films for different RF powers of the ICP was determined using an atomic force microscope (AFM). The contact angles of the PES films were also measured, using which the surface free energies were calculated. The O1s XPS spectra of the PES films revealed that the number of polar functional groups increased following the O2 plasma treatment. The AFM analysis showed the average surface roughness increased from 1.01 to 4.48 nm as the RF power of the ICP was increased. The contact angle measurements revealed that the PES films became more hydrophilic as the RF power of the ICP was increased. The total surface energy increased with the RF power of the ICP, resulting from the increased polar energy component.

Charge/Discharge Characteristics of $SnO_2$ thin film as an anode of thin film secondary battery for microelectromechanical system device (Microelectromechnical system 소자를 위한 박막형 2차전지용 $SnO_2$ 음극박막의 충방전 특성 평가)

  • 남상철;조원일;전은정;신영화;윤영수
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • $SnO-2$ thin films for thin film secondary battery anode were deposited n glass substrate with stain-less steel collector and charge/discharge experiments were conducted to investigate feasibility of $SnO-2$ thin film as a new anode material. The as-deposited films were pure $SnO-2$ phase which is not related to deposition condition. The grain size on the surface of as-deposited films increased with increase of oxygen partial pressure. However, the grain size did not show any change above oxygen partial pressure of 80:20. The surface roughness of the as-deposited films increased after decreasing because of resputtering effect of oxygen negative ion in plasma. All films showed typical $SnO-2$ anode characteristics which has a side effect at the first cycle, which is not related to the deposition condition. The charge/discharge experiments of 200cycles indicated that capacity of $SnO-2$ films depended on oxygen contents and surface roughness. The cycle characteristics was determined by initial charge/discharge reaction. The $SnO-2$ film with low initial capacity showed more stable cycle characteristics than film with high initial capacity.

  • PDF

Evaluation of a Dielectric Barrier Discharge Plasma System for Inactivating Pathogens on Cheese Slices

  • Lee, Hyun-Jung;Jung, Samooel;Jung, Hee-Soo;Park, Sang-Hoo;Choe, Won-Ho;Ham, Jun-Sang;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.191-198
    • /
    • 2012
  • The objective of this study was to evaluate the potential use of a dielectric barrier discharge (DBD) plasma system to improve microbial safety of sliced cheese. The atmospheric pressure plasma (APP) effect on visual appearance and a sensory evaluation were also carried out. The number of Escherichia coli inoculated on cheese slices decreased by 0.09, 0.47, 1.16 and 1.47 log cycles with helium (4 liters/min [lpm]) and 0.05, 0.87, 1.89 and 1.98 log cycles with He/$O_2$ mixture (4 lpm/15 standard cubic centimeters per minute), after being treated with plasma for 1, 5, 10, and 15 min, respectively. Significant reductions were also observed in Staphylococcus aureus inoculated onto cheese slices ranging from 0.05 to 0.45 log cycles with He and from 0.08 to 0.91 log cycles with He/$O_2$-treated samples, respectively. Adding oxygen resulted in a significant increase in inactivation of both pathogens. No visible change in the plasma-treated cheese slices was observed even though the instrumental analysis showed a significant decrease in the $L^*$-value and an increase in the $b^*$-value. The cheese slices were damaged after 10 and 15 min of plasma treatment. In addition, significant reductions in sensory quality including flavor, odor, and acceptability of plasma-treated cheese slices were observed. The results indicate that the DBD plasma system has potential for use in sanitizing food products, although the effect was limited. Further development of the APP system is necessary for industrial use.

Effect of Low Temperature Plasma Treatment on Wool Fabric Properties

  • Kan C. W.;Yuen C. W. M.
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.169-173
    • /
    • 2005
  • Low temperature plasma (LTP) treatment was applied to wool fabric with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabric properties including low-stress mechanical properties, air permeability and thermal properties, were evaluated. The low-stress mechanical properties were evaluated by means of Kawabata Evaluation System Fabric (KES-F) revealing that the tensile, shearing, bending, compression and surface properties were altered after the LTP treatment. The changes in these properties are believed to be related closely to the inter-fiber and inter-yam frictional force induced by the LTP. The decrease in the air permeability of the LTP-treated wool fabric was found to be probably due to the plasma action effect on increasing in the fabric thickness and a change in fabric surface morphology. The change in the thermal properties of the LTP-treated wool fabric was in good agreement with the above findings and can be attributed to the amount of air trapped between the yams and fibers. This study suggested that the LTP treatment can influence the final properties of the wool fabric.

Nucleation Enhancing Effect of Different ECR Plasmas Pretreatment in the RUO2 Film Growth by MOCVD (ECR플라즈마 전처리가 RuO2 MOCVD시 핵생성에 끼치는 효과)

  • Eom, Taejong;Park, Yunkyu;Lee, Chongmu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.94-98
    • /
    • 2005
  • $RuO_2$ is widely studied as a lower electrode material for high dielectric capacitors in DRAM (Dynamic Random Access Memories) and FRAM (Ferroelectric Random Access Memories). In this study, the effects of hydrogen, oxygen, and argon Electron Cyclotron Resonance (ECR) plasma pretreatments on deposited by Metal Organic Chemical Vapor Deposition (MOCVD) $RuO_2$ nucleation was investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) analyses. Argon ECR plasma pretreatment was found to offer the highest $RuO_2$ nucleation density among these three pretreatments. The mechanism through which $RuO_2$ nucleation is enhanced by ECR plasma pretreatment may be that the argon or the hydrogen ECR plasma removes nitrogen and oxygen atoms at the TiN film surface so that the underlying TiN film surface is changed to Ti-rich TiN.

Deposition of ZrO$_2$ and TiO$_2$ Thin Films Using RF Magnet ron Sputtering Method and Study on Their Structural Characteristics

  • Shin, Y.S.;Jeong, S.H.;Heo, C.H.;Bae, I.S.;Kwak, H.T.;Lee, S.B.;Boo, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.14-21
    • /
    • 2003
  • Thin films of ZrO$_2$ and TiO$_2$ were deposited on Si(100) substrates using RF magnetron sputtering technique. To study an influence of the sputtering parameters, systematic experiments were carried out in this work. XRD data show that the $ZrO_2$ films were mainly grown in the [111] orientation at the annealing temperature between 800 and $1000^{\circ}C$ while the crystal growth direction was changed to be [012] at above $1000^{\circ}C$. FT-IR spectra show that the oxygen stretching peaks become strong due to $SiO_2$ layer formation between film layers and silicon surface after annealing, and proved that a diffusion caused by either oxygen atoms of $ZrO_2$ layers or air into the interface during annealing. Different crystal growth directions were observed with the various deposition parameters such as annealing temperature, RF power magnitude, and added $O_2$ amounts. The growth rate of $TiO_2$ thin films was increased with RF power magnitude up to 150 watt, and was then decreased due to a sputtering effect. The maximum growth rate observed at 150 watt was 1500 nm/hr. Highly oriented, crack-free, stoichiometric polycrystalline $TiO_2$<110> thin film with Rutile phase was obtained after annealing at $1000^{\circ}C$ for 1 hour.

Dependence on the Oxygen Gas of ITO Thin film for TOLED by Facing Targets Sputtering Method (대향타겟식 스퍼터링법을 이용한 TOLED용 ITO 박막의 산소 가스 의존성)

  • Keum Min-Jong;Kim Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-90
    • /
    • 2006
  • In case of preparation of ITO thin film for using top electrode of Top-emitting Organic Light Emitting Diodes(TOLEDs), the ITO thin film should be prepared at room temperature and low oxygen gas flow condition in order to reduced the damage of organic layer due to the bombardment of highly energetic particles such as negative oxygen ions which accrued from the plasma. In this study, the ITO thin film with high optical transmittance and low resistivity prepared as a function of oxygen gas (0 ${\~}$ 0.8 sccm) and Ar gas was fixed at 20 sccm by the Facing Targets Sputtering (FTS) method. The electrical and optical properties of ITO thin films were measured by Hall effect measurement, UV/VIS spectrometer, respectively In the results, we obtained the ITO thin film with lowest resistivity($3{\times}10^{-4} {\Omega}{\cdot} cm$) at oxygen gas flow 0.2 sccm and optical transmittance over $80\%$ at oxygen gas flow over 0.2 sccm.