• 제목/요약/키워드: Oxygen-glucose deprivation

검색결과 59건 처리시간 0.019초

시호(柴胡)의 뇌해마 신경세포 보호효능에 대한 연구 (A Study of Neuroproctective Effect of Bupleuri Radix on Hippocampal Neurons)

  • 이원철;신광식
    • 대한한방내과학회지
    • /
    • 제25권4호
    • /
    • pp.227-241
    • /
    • 2004
  • Objective : This study was performed to investigate neuroprotective effects of Bupleuri Radix against oxidative and ischemic damages. Method : To observe the neuroprotective effects against ischemic damage, ischemic insult was induced by oxygen/glucose deprivation (OGD) on organotypic hippocampal slice cultures (OHSC) from 1 week-old Sprague-Dawley rats. Propidium iodide (PI) fluorescence-stained neuronal dead-cell areas, area percentages and TUNEL-positive apoptotic cells in CA1 and dentate gyrus, and LDH levels in culture media of the OHSC were measured following Bupleuri Radix extract treatment. Result : The following results were obtained: (1) The $5\;{\mu}g/ml$ of Bupleuri Radix treatment demonstrated a significant decrease in PI fluorescence-stained neuronal dead-cell areas and area percentage in CA1 region of the OHSC from 18 hrs to 48 hrs following the OGD. The $50\;{\mu}g/ml$ of Bupleuri Radix treatment was also significant from 6 hrs to 48 hrs following the OGD and was more effective. (2) The 5 and $50\;{\mu}g/ml$ of Bupleuri Radix treatment demonstrated a significant decrease in PI fluorescence-stained neuronal dead-cell areas and area percentage in DG region of the OHSC from 6 hrs to 48 hrs following the OGD. The $50\;{\mu}g/ml$ treatment was more effective than the $5\;{\mu}g/ml$ treatment. (3) Bupleuri Radix treatment demonstrated a significant decrease in TUNEL-positive apoptotic cells in CA1 region (with 5 and $50\;{\mu}g/ml$) and in DG region (with $50\;{\mu}g/ml$) of the OHSC damaged by the OGD. (4) Bupleuri Radix treatment demonstrated a significant decrease in LDH concentrations in culture media of the OHSC damaged by the OGD. Conclusion : These results suggest that Bupleuri Radix has neuroprotective and control effects on inflammatory and immune responses where there has been ischemic damage to the central nervous system.

  • PDF

양격산화탕(凉膈散火湯)이 뇌해마 조직배양의 허혈손상에 따른 신경세포손상에 미치는 영향 (Effect of Yanggyuksanhwa-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture)

  • 이환성;박성준;정광식;손영주;정혁상;박동일;손낙원
    • 대한한방내과학회지
    • /
    • 제29권1호
    • /
    • pp.231-242
    • /
    • 2008
  • Objectives : We can find out the experimental reports of Yanggyuksanhwa-tang, which has the function of regulating blood pressure related with cerebral disease, and increasing local cerebral blood stream volume, also has the recoveries for the damage of vessel endothelium, and endothelium hypertrophy caused by angiospasm after subarachnoid hemorrhage, and reduces the contraction of smooth muscle, so simultaneously improves necrosis. The aim of this study is to investigate effect of Yanggyuksanhwa-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. Methods : We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation, and Yanggyuksanhwa-tang extract was added to cultures. Thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Results : Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. Conclusions : Within pertinent density level, Yanggyuksanhwa-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

  • PDF

Induction of Neuron-derived Orphan Receptor-1 in the Dentate Gyrus of the Hippocampal Formation Following Transient Global Ischemia in the Rat

  • Kim, Younghwa;Hong, Soontaek;Noh, Mi Ra;Kim, Soo Young;Huh, Pil Woo;Park, Sun-Hwa;Sun, Woong;Kim, Hyun
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.8-12
    • /
    • 2006
  • Neuron-derived orphan receptor (NOR-1) is a member of the thyroid/steroid receptor superfamily that was originally identified in forebrain neuronal cells undergoing apoptosis. In addition to apoptotic stimuli, activation of several signal transduction pathways including direct neuronal depolarization regulates the expression of NOR-1. In this study we tested whether the expression of NOR-1 is changed following transient ischemic injury in the adult rat brain. NOR-1 mRNA increased rapidly in the dentate gyrus of the hippocampal formation and piriform cortex 3 h after transient global ischemia and returned to basal level at 6 h. On the other hand, oxygen-glucose deprivation of cultured cerebral cortical neurons did not alter the expression of NOR-1. These results suggest that expression of NOR-1 is differentially regulated in different brain regions in response to globally applied brain ischemia, but that hypoxia is not sufficient to induce its expression.

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen Qi;Zhipeng Yan;Yueyao Wang;Nan Ji;Xiaoya Yang;Ao Zhang;Meng Li;Fengqin Xu;Junping Zhang
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.228-236
    • /
    • 2023
  • Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/Reperfusion Injury during Liver Transplantation

  • Kwon, Jae Hyun;Lee, Jooyoung;Kim, Jiye;Kirchner, Varvara A.;Jo, Yong Hwa;Miura, Takeshi;Kim, Nayoung;Song, Gi-Won;Hwang, Shin;Lee, Sung-Gyu;Yoon, Young-In;Tak, Eunyoung
    • Molecules and Cells
    • /
    • 제42권9호
    • /
    • pp.672-685
    • /
    • 2019
  • Currently, liver transplantation is the only available remedy for patients with end-stage liver disease. Conservation of transplanted liver graft is the most important issue as it directly related to patient survival. Carbonyl reductase 1 (CBR1) protects cells against oxidative stress and cell death by inactivating cellular membrane-derived lipid aldehydes. Ischemia-reperfusion (I/R) injury during living-donor liver transplantation is known to form reactive oxygen species. Thus, the objective of this study was to investigate whether CBR1 transcription might be increased during liver I/R injury and whether such increase might protect liver against I/R injury. Our results revealed that transcription factor Nrf2 could induce CBR1 transcription in liver of mice during I/R. Pre-treatment with sulforaphane, an activator of Nrf2, increased CBR1 expression, decreased liver enzymes such as aspartate aminotransferase and alanine transaminase, and reduced I/R-related pathological changes. Using oxygen-glucose deprivation and recovery model of human normal liver cell line, it was found that oxidative stress markers and lipid peroxidation products were significantly lowered in cells overexpressing CBR1. Conversely, CBR1 knockdown cells expressed elevated levels of oxidative stress proteins compared to the parental cell line. We also observed that Nrf2 and CBR1 were overexpressed during liver transplantation in clinical samples. These results suggest that CBR1 expression during liver I/R injury is regulated by transcription factor Nrf2. In addition, CBR1 can reduce free radicals and prevent lipid peroxidation. Taken together, CBR1 induction might be a therapeutic strategy for relieving liver I/R injury during liver transplantation.

대황(大黃)의 항산화와 신경세포손상 보호효능에 대한 연구 (Anti-Oxidative and Neuroprotective Effects of Rhei Rhizoma on BV-2 Microglia Cells and Hippocampal Neurons)

  • 명성하;김연섭
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.647-655
    • /
    • 2005
  • This study demonstrated anti-oxidative and neuroprotective effects of Rhei Rhizoma. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. Neuroprotective effects were studied by using oxygen/glucose deprivation of the organotypic hippocampal slice cultures. The results obtained are as follows; The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in CA1 region, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in dentate gyrus of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in dentate gyrus, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and dentate gyrus of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region, but not in dentate gyrus of ischemic damaged hippocampus. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated decrease of LDH concentrations in culture media, but it was not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with 50 mg/ml of Puerariae Radix demonstrated increase of cell viability of BV-2 microglia cells, but it was not significant statistically. The group treated with 0.5 mg/ml of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. The groups treated with 5 and 50 mg/ml of Puerariae Radix demonstrated increases of cell viabilities of BV-2 microglia cells, but these were not significant statistically. These results suggested that Puerariae Radix revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.

Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy

  • Hu, Jingui;Zhang, Ling;Fu, Fei;Lai, Qiong;Zhang, Lu;Liu, Tao;Yu, Boyang;Kou, Junping;Li, Fang
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.255-265
    • /
    • 2022
  • Background: Ginsenoside Rb1, a bioactive component isolated from the Panax ginseng, acts as a remedy to prevent myocardial injury. However, it is obscure whether the cardioprotective functions of Rb1 are related to the regulation of endogenous metabolites, and its potential molecular mechanism still needs further clarification, especially from a comprehensive metabolomics profiling perspective. Methods: The mice model of acute myocardial ischemia (AMI) and oxygen glucose deprivation (OGD)-induced cardiomyocytes injury were applied to explore the protective effect and mechanism of Rb1. Meanwhile, the comprehensive metabolomics profiling was conducted by high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) and a tandem liquid chromatography and mass spectrometry (LC-MS). Results: Rb1 treatment profoundly reduced the infarct size and attenuated myocardial injury. The metabolic network map of 65 differential endogenous metabolites was constructed and provided a new inspiration for the treatment of AMI by Rb1, which was mainly associated with mitophagy. In vivo and in vitro experiments, Rb1 was found to improve mitochondrial morphology, mitochondrial function and promote mitophagy. Interestingly, the mitophagy inhibitor partly attenuated the cardioprotective effect of Rb1. Additionally, Rb1 markedly facilitated the phosphorylation of AMP-activated protein kinase α (AMPKα), and AMPK inhibition partially weakened the role of Rb1 in promoting mitophagy. Conclusions: Ginsenoside Rb1 protects acute myocardial ischemia injury through promoting mitophagy via AMPKα phosphorylation, which might lay the foundation for the further application of Rb1 in cardiovascular diseases.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.