• 제목/요약/키워드: Oxygen-Enrichment

Search Result 119, Processing Time 0.031 seconds

Distributions of Organic Matter and Trace Metals in Sediment around a Tidal-flat Oyster Crassostrea gigas Farming Area on the Taean Peninsula, Korea (태안반도 갯벌 참굴(Crassostrea gigas) 양식장 주변 퇴적물의 유기물 및 미량금속 분포)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1014-1025
    • /
    • 2014
  • We measured the concentrations of various geochemical parameters [grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Cu, Cd, Pb, Cr, Mn, As, Zn, and Hg)] in the surface sediments of two intertidal oyster Crassostrea gigas farming areas (Iwon and Mongsan tidal flats) on the Taean Peninsula, Korea, to evaluate the pollution level of organic matter and trace metals in sediment. The intertidal sediments in the study region comprise mostly sand with a mean grain size of 2.5-3.5 Ø. The concentrations of IL, COD, AVS, and trace metals in the sediment of two study regions were either similar or lower in oyster farming areas relative to non-farming areas, apparently due to biological uptake or physical and biological sediment reworking. Based on the results for the pollution evaluation of organic matter and trace metals derived from sediment quality guidelines, enrichment factor, and geoaccumulation index, our results suggest that the sediment in these two intertidal oyster farming regions is not polluted by organic matter and trace metals.

Mitigating $CH_4$ Emissions in Semi-Aerobic Landfills: Impacts of Operating Conditions on Abundance and Community Structure of Methanotrophs in Cover Soils

  • Li, Huai;Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.993-1003
    • /
    • 2013
  • Methanotrophs are the most important sink of $CH_4$, which is a more highly potent greenhouse gas than $CO_2$. Methanotrophic abundance and community diversity in cover soils from two typical semi-aerobic landfills (SALs) in China were detected using real-time polymerase chain reaction (real-time-PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA genes, respectively. Real time-PCR showed that Type I methanotrophs ranged from $1.07{\times}10^6$ to $2.34{\times}10^7$ copies/g soil and that of Type II methanotrophs from $1.51{\times}10^7$ to $1.83{\times}10^8$ copies/g soil. The ratio of Type II to Type I methanotrophic copy numbers ranged from 5.61 to 21.89, indicating that Type II methanotrophs dominated in SAL. DGGE revealed that Type I methanotrophs responded more sensitively to the environment, changing as the community structure varied with different soil types and locations. Methylobacter, Methylosarcina, and Methylomicrobium for Type I, and Methylocystis for Type II were most prevalent in the SAL cover layer. Abundant interflow $O_2$ with high $CH_4$ concentration in SALs is the reason for the higher population density of methanotrophs and the higher enrichment of Type II methanotrophs compared with anaerobic landfills and other ecosystems, which proved a conclusion that increasing the oxygen supply in a landfill cover layer would greatly improve $CH_4$ mitigation.

Thermal Decomposition and Combustion Behavior of Plastics into Blast Furnace (플라스틱의 高爐 吹入時 熱分解特性 및 燃燒擧動)

  • 허남환;백찬영;임창희
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.15-22
    • /
    • 2000
  • There are many intensive efforts to develop the recycling technologies of waste plastics in steel works to tackle the saving of resources and the protection of the natural environment. In this study, the thermogravimetric analyses for three kinds of plastics, the combustion experiments and the theoretical approach for calculating the flame temperature in the blast furnace had been performed to understand the behavior of plastics in the raceway. The thermal decompositions of plastics were studied using thermogravimetric analyzer under the atmospheric condition. The starting temperature of thermal decomposition and the maximum weight loss point were increased in proportion to the logarithmic values of heating rate. The combustion characteristics of plastics were simulated in a coke-bed combustor. The combustion efficiency of plastics was lower than that of pulverized coal. The oxygen enrichment was found out to be one of the useful methods to increase the combustibility of plastics in raceway. The maximum injection rate of plastics was calculated based on the flame temperature.

  • PDF

Assessment of the physico-chemical quality and extent of algal proliferation in water from an impounding reservoir prone to eutrophication

  • Ballah, Mohun;Bhoyroo, Vishwakalyan;Neetoo, Hudaa
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.22-30
    • /
    • 2019
  • Background: Piton du Milieu (PdM) impounding reservoir is suspected to be eutrophic based on the elevated level of orthophosphate and nitrate. Water supplies from three adjacent rivers are primarily thought to contribute to the nutrient enrichment of the reservoir. It is also suspected that there is leaching of orthophosphate, nitrate and organic matter into the rivers during rainfall events and also as a result of anthropogenic activities within the catchment area. The aim of this study was to ascertain the impact of nutrient loading on the water quality of PdM water and on the population of freshwater microalgae in the reservoir. The enumeration and identification of algae from PdM were performed by differential interference contrast microscopy. Dissolved oxygen (DO) and pH were determined by electrometric methods, whereas nutrient levels, silica and total organic carbon (TOC) were determined by instrumentation techniques. Results: Annual mean orthophosphate, nitrate and total organic carbon input from the three feeders within the catchment area of PdM reached levels as high as 0.09 mg/L, 0.4 mg/L and 2.62 ppm respectively. Over a 12-month period, mean TOC concentration in the reservoir was 2.32 ppm while the mean algal cell count was 4601 cells/mL. The dominant algal species identified were Oscillatoria, Cyclotella, Navicula and Cosmarium. Conclusion: This study highlights the trophic state of the reservoir water and clearly points to the need for constant monitoring in order to avoid the occurrence of an impending harmful algal bloom.

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF

Transcriptome Profiling Identifies Genes of Waterlogging-Tolerant and -Sensitive Rapeseeds Differentially Respond to Waterlogging Stress at the Flowering Stage

  • Ji-Eun Lee;Da-Hee An;Kwang-Soo Kim;Young-Lok Cha;Dong-Chil Chang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.229-229
    • /
    • 2022
  • Rapeseed is a crop that is waterlogging sensitive, and it is necessary to breed waterlogging tolerance varieties. Our study presents the comparative transcriptome changes in two rapeseed lines, i.e., waterlogging-tolerant (tJ8634-B-30,) and - sensitive ('EMS26') lines under control and waterlogging stress treatments at the flowering stage. RNA-sequencing analysis revealed 13,279 differentially expressed genes (DEGs) for 'J8634-B-30' and 8,682 DEGs for 'EMS26' under waterlogging stress condition compared to control. Among DEGs of 'J8634-B-30', 6,818 were up-regulated and 6,461 were down-regulated. On the other hand, among the DEGs of 'EMS26', the number of down-regulated genes (5,240) were higher than that of up-regulated genes (3,442). Gene ontology enrichment analysis showed that DEGs related to glucan metabolic, cell wall, and oxidoreductase activity were significantly changed in 'J8634-B-30'. Kyoto Encyclopedia of Genes and Genomes (KEGG)-based analysis in 'J8634-B-30' identified up-regulated DEGs being involved in MAPK signaling pathways. In addition, the DEGs belonging to mechanisms responding to waterlogging stress, i.e., plant hormones, carbon metabolism, Reactive oxygen species (ROS), Nitric oxide (NO) etc. were compared in rapeseed lines. Several DEGs including ethylene-responsive transcription factor (ERF), constitutive triple response (CTR) (in ethylene signaling pathway), monodehydroascorbate Reductase (MDAR), NADPH oxidase (in ROS pathway), cytochrome c oxidase assembly protein (COX) (in NO pathway) up-regulated in 'J8634-B-30'. These outcomes provided the valuable information for further exploring the genetic mechanism of waterlogging tolerance in rapeseed.

  • PDF

Comparison of Gene Expression Changes in Three Wheat Varieties with Different Susceptibilities to Heat Stress Using RNA-Seq Analysis

  • Myoung Hui Lee;Kyeong-Min Kim;Wan-Gyu Sang;Chon-Sik Kang;Changhyun Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.197-197
    • /
    • 2022
  • Wheat is highly susceptible to heat stress, which significantly reduces grain yield. In this study, we used RNA-seq technology to analyze the transcript expression at three different time-points after heat treatment in three cultivars differing in their susceptibility to heat stress: Jopum, Keumkang, and Olgeuru. A total of 11,751, 8850, and 14,711; 10,959,7946, and 14,205; and 22,895,13,060, and 19,408 differentially-expressed genes (log2 fold-change > 1 and FDR (padj) < 0.05) were identified in Jopum, Keumkang, and Olgeuru in the control vs. 6-h, in the control vs. 12-h, and in the 6-h vs. 12-h heat treatment, respectively. Functional enrichment analysis showed that the biological processes for DEGs, such as the cellular response to heat and oxidative stress-and including the removal of superoxide radicals and the positive regulation of superoxide dismutase activity-were significantly enriched among the three comparisons in all three cultivars. Furthermore, we investigated the differential expression patterns of reactive oxygen species (ROS)-scavenging enzymes, heat shock proteins, and heat-stress transcription factors using qRT-PCR to confirm the differences in gene expression among the three varieties under heat stress. This study contributes to a better understanding of the wheat heat-stress response at the early growth stage and the varietal differences in heat tolerancea.

  • PDF

Isolation of Microorganisms and Development of Microbial Augmentation for Treatment of Paper Mill Wastewater (제지폐수 처리용 미생물의 분리 및 복합 미생물제제의 개발)

  • Kang, Dae-Ook;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.554-560
    • /
    • 2011
  • This study was performed to investigate the effects of microbial augmentation on the biological treatment of paper mill wastewater. Three bacteria (KN11, KN13, KN27) capable of degrading aromatic compounds and a bacterial strain (GT21) producing an extracellular cellulase were isolated from soil and wastewater by selective enrichment culture. Through morphological, physiological, and biochemical taxonomies, isolated strains of KN11, KN13, KN27, and GT21 were identified as Acinetobacter sp., Neisseria sp., Bacillus sp., and Pseudomonas sp. and named Acinetobacter sp. KN11, Neisseria sp. KN13, Bacillus sp. KN27, and Pseudomonas sp. GT21, respectively. For analysis of non-biodegradable and chemical oxygen demand (COD)-increasing matter in a paper mill wastewater, we utilized GC/MS to detect aromatic compounds and their derivatives containing several substituted functional groups. The microbial augmentation, J30 formulated with the mixture of bacteria including Acinetobacter sp. KN11, Neisseria sp. KN13, Bacillus sp. KN27, and Pseudomonas sp. GT21, was used for the treatment of paper mill wastewater. The optimum temperature and pH for COD removal of the microbial augmentation, J30, were $30^{\circ}C$ and 7.5, respectively. For evaluation of the industrial applicability of the microbial augmentation, J30 in the pilot test, treatment efficiency was examined using paper mill wastewater. The microbial augmentation, J30, showed a COD removal rate of 87%. On the basis of the above results, we designed the wastewater treatment process of the activated sludge system.

Development of a Biosensor Using Electrochemically-Active Bacteria [EAB] for Measurements of BOD [Biochemical Oxygen Demand] (전기화학적 활성 미생물을 이용한 BOD 측정용 바이오센서의 개발)

  • Yoon, Seok-Min;Choi, Chang-Ho;Kwon, Kil-Koang;Jeong, Bong-Geun;Hong, Seok-Won;Choi, Yong-Su;Kim, Hyung-Joo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.438-442
    • /
    • 2007
  • A biosensor using electrochemically-active bacteria (EAB) enriched in three-electrode electrochemical cell, was developed for the determination of biochemical oxygen demand (BOD) in wastewater. In the electrochemical cell, the positively poised working electrode with applying a potential of 0.7 V was used as an electron acceptor for the EAB. The experimental results using artificial and raw wastewater showed that the current pattern generated by the biosensor and its Coulombic yield were proportional to the concentration of organic matter in wastewater. The correlation coefficients of BOD vs Coulombic yield and $BOD_5$ vs Coulombic yield were 0.99 and 0.98, respectively. These results indicate that the biosensor enriched with the EAB capable of transferring electrons directly toward the electrode can be utilized as a water-quality monitoring system due to a quick and accurate response.