• Title/Summary/Keyword: Oxygen transmission rate

Search Result 90, Processing Time 0.026 seconds

Generation of Silver Nanoparticles by Spark Discharge Aerosol Generator Using Air as a Carrier Gas (공기 분위기에서 스파크 방전을 이용한 은 나노입자 생성)

  • Oh, Hyun-Cheol;Jung, Jae-Hee;Park, Hyung-Ho;Ji, Jun-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.170-176
    • /
    • 2006
  • A spark discharge aerosol generator using air as a carrier gas has successfully been applied to silver nanoparticle production. The spark discharge between two silver electrodes, which was periodically obtained by discharging the capacitor, produced sufficient high temperatures to evaporate a small fraction of the silver electrodes. The silver vapor was subsequently supersaturated by rapid cooling and condensed to silver nanoparticles by nucleation and condensation. The morphology of the generated particles observed by transmission electron microscope was spherical. The element composition of the nanoparticles was silver, which was determined by energy dispersive X-ray spectroscopy. The crystal phase of the particles spark-generated under air atmosphere was composed of silver and silver oxides phase, which was determined by Xray diffraction analysis. While the nanoparticles generated under nitrogen atmosphere had only silver phase. This XRD data indicates that some fraction of the evaporated silver vapor could be oxidized in air atmosphere by the reaction with oxygen. A stable operation of the spark discharge generator has been achieved. The size and concentration of the particles can be easily controlled by altering the repetition frequency, capacitance, gap distance and flow rate of the spark discharge system.

Effect of Secondary Air on Flow and Combustion Characteristics in a Pyrolysis Melting Incinerator (열분해 용융소각로 연소실의 2차공기 주입 영향에 관한 전산해석 및 실험)

  • Jeon, Byoung-Il;Park, Sang-Uk;Shin, Dong-Hoon;Ryu, Tae-Woo;Jeon, Kum-Ha;Hwang, Jung-Ho;Lee, Jin-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.149-157
    • /
    • 2004
  • In the present paper we studied experimentally fundamental optimization of oxygen enriched pyrolysis melting incinerator, Characteristics of this system was confirmed dealing with the gas flow and combustion properties for the inside secondary air injection. The experiment setup has a disposal rate of 30kg/hr which was measured by the inside temperature and gas. Along with above experiments, the three-dimensional computation was employed to analyse the combustion fluid dynamics and gas residence time. Equations for turbulence and heat - transmission as well as chemical reactions were solved by using common codes. The experimental combustion chamber was composed of staged combustion types structure for reducing NOx. Finally, it was verified that the control of the secondary air and air ratio of thermo stack were important. In the computational analysis, it showed reasonable agreement with the experimental results regarding the temperature and discharged gas concentration.

  • PDF

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.

Advanced Permeation Properties of Solvent-free Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET)

  • Han, Jin-Woo;Kang, Hee-Jin;Kim, Jong-Yeon;Kim, Jong-Hwan;Han, Jung-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Kim, Hwi-Woon;Seo, Dae-Shik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.973-976
    • /
    • 2006
  • In this paper, the inorganic multi-layer encapsulation of thin film was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Ethylene Terephthalate(PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON $SiO_2$ and parylene layer showed the most suitable properties. Under these conditions, the water vapor transmission rate (WVTR) for PET can be reduced from level of $0.57g/m^2/day$ (bare substrate) to $1^{\ast}10^{-5}g/m^2/day$ after application of a SiON and $SiO_2$ layer. These results indicate that the $PET/SiO_2/SiON/Parylene$ barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

Passivation Layers for Organic Thin-film-transistors

  • Lee, Ho-Nyeon;Lee, Young-Gu;Ko, Ik-Hwan;Kang, Sung-Kee;Lee, Seong-Eui;Oh, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.36-40
    • /
    • 2007
  • Inorganic layers, such as SiOxNy and SiOx deposited using plasma sublimation method, were tested as passivation layer for organic thin-film-transistors (OTFTs). OTFTs with bottom-gate and bottom-contact structure were fabricated using pentacene as organic semiconductor and an organic gate insulator. SiOxNy layer gave little change in characteristics of OTFTs, but SiOx layer degraded the performance of OTFTs severely. Inferior barrier properties related to its lower film density, higher water vapor transmission rate (WVTR) and damage due to process environment of oxygen of SiOx film could explain these results. Polyurea and polyvinyl acetates (PVA) were tested as organic passivation layers also. PVA showed good properties as a buffer layer to reduce the damage come from the vacuum deposition process of upper passivation layers. From these results, a multilayer structure with upper SiOxNy film and lower PVA film is expected to be a superior passivation layer for OTFTs.

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

Ultra Thin Film Encapsulation for Flexible OLED (플렉시블 유기 EL 소자를 위한 초박막 보호층)

  • Lim, J.S.;Shin, P.K.;Lim, K.B.;Song, J.H.;Kim, C.Y.;Lee, B.S.;Jeung, Y.S.;Lim, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1412-1413
    • /
    • 2006
  • In this research, an organic thin 13 passivation layer was newly adopted to prefect the organic layer from ambient moisture and oxygen. As the organic thin film passivation layer, poly methyl methacrylate thin films (ppMMA) were deposited using a plasma polymerization technique. In order to their passivation performance for OLEDs, water vapor transmission rate (WVTR) of the ppMMAs were analyzed and luminance-current-voltage (L-I-V)/luminance-time (L-T) characteristics of the OLEDs with and without ppMMA passivation layer were investigated. The OLEDs had a structure of ITO/TPD (HTL)/Alq3(EML&ETL)/Al. The OLED with ppMMA passivation layer showed improved L-T performance than that of without ppMMA passivation layer.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Proposal and Evaluation of Ultra High Speed Wireless Cell Backbone Networks (도시형 초고속 무선통신 셀백본망의 제안 및 평가)

  • Shin, Cheon-Woo;Park, Sung-Hyun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.243-248
    • /
    • 2003
  • This paper is contents on that construct ultra high speed wireless communication cell backbone net of city using of wireless communication transceiver for millimeter wave band. A new type of 60GHz wave band wireless transceiver using NRD waveguide. This 60GHz transceiver has excellent signal's absorption characteristics of oxygen molecule than the other millimeter wave bands. We constructed service networks to cell interval within about 500m to 3Km laying stress on wireless backbone node using 60GHz transceivers, and did it so that city type wireless communication cell backbone networks of 155.52Mbps ATM(OC-3) may be possible. The possible use of wireless backbone networks technology in a rainy day and a clear day was evaluated at 1Km data link distance. We can measured bit error rate(BER). BER is $10^{-11}$ at 155.52Mbps ATM(OC-3) in a clear day and $10^{-6}$ in a heavy rain more than 35mm per time. Also, we constructed wireless cell backbone networks distance to use several 60GHz transceivers and investigated data transmission rate between main center and local center of long distance. In proposed wireless cell backbone networks, the data throughput was approximately 80Mbit/sec. Therefore, if use transceiver, it is possible that city type ultra high speed wireless communication cell backbone networks construction of 100Mbps, 155.52Mbps, 622Mbps, 1Gbps and 1.2Gbps degrees.

  • PDF

Smoke Characteristics of a Small Scale Pool Eire (작은 풀화재에서의 연기 특성)

  • Lee Eui-Ju;Ahn Chan-Sol;Shin Hyun-Joon;Oh Kwang-Chul;Lee Uen-Do
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.58-63
    • /
    • 2005
  • Experimental measurements of flames and the product properties were performed for small kerosene pool fires. which is widely used as a fire source of laboratory scale experiments with scaling modeling. The flame length and flickering frequency were investigated for the flame structures, and compared with the theory. Three measurement methods were introduced to clarify the smoke characteristics, i.e. various gas concentrations, smoke density and thermophoretic sampling with transmission electron microscopy (TEM). The yield of carbon dioxide and the consumption of oxygen were proportional to the heat release rate of pool fires, but there is no trend on carbon monoxide emission. Smoke density of turbulent flames was exponentially increased with the heat release rate. The morphology of the soot particle was investigated to address the degree of soot maturing. The results show that the similar smoke morphology between an inverse jet flame and a pool fire exists despite of different combustion controlling mechanisms.