DOI QR코드

DOI QR Code

Generation of Silver Nanoparticles by Spark Discharge Aerosol Generator Using Air as a Carrier Gas

공기 분위기에서 스파크 방전을 이용한 은 나노입자 생성

  • 오현철 (한국과학기술원 기계공학과) ;
  • 정재희 (한국과학기술원 기계공학과) ;
  • 박형호 (한국과학기술원 기계공학과) ;
  • 지준호 (삼성전자 가전연구소) ;
  • 김상수 (한국과학기술원 기계공학과)
  • Published : 2006.02.01

Abstract

A spark discharge aerosol generator using air as a carrier gas has successfully been applied to silver nanoparticle production. The spark discharge between two silver electrodes, which was periodically obtained by discharging the capacitor, produced sufficient high temperatures to evaporate a small fraction of the silver electrodes. The silver vapor was subsequently supersaturated by rapid cooling and condensed to silver nanoparticles by nucleation and condensation. The morphology of the generated particles observed by transmission electron microscope was spherical. The element composition of the nanoparticles was silver, which was determined by energy dispersive X-ray spectroscopy. The crystal phase of the particles spark-generated under air atmosphere was composed of silver and silver oxides phase, which was determined by Xray diffraction analysis. While the nanoparticles generated under nitrogen atmosphere had only silver phase. This XRD data indicates that some fraction of the evaporated silver vapor could be oxidized in air atmosphere by the reaction with oxygen. A stable operation of the spark discharge generator has been achieved. The size and concentration of the particles can be easily controlled by altering the repetition frequency, capacitance, gap distance and flow rate of the spark discharge system.

Keywords

References

  1. Friedlander, S. K., 2000, Smoke, Dust, and HazeFundamentals of Aerosol Dynamics, Oxford Press, New York, pp. 331-338
  2. Schwyn, S., Garwin, E. and Schmidt-Ott, A., 1988, 'Aerosol Generation by Spark Discharge,' J. Aerosol Sci., Vol. 19, pp. 639-642 https://doi.org/10.1016/0021-8502(88)90215-7
  3. Burtscher, H. and Schmidt-Ott, A., 1982, 'Enormous Enhancement of van der Waals Forces Between Small Silver Particles,' Phys. Rev. Lett. Vol. 48, pp. 1734-1737 https://doi.org/10.1103/PhysRevLett.48.1734
  4. Lee, C. S., Kim, Y. J. and Kim, S. S., 2000, 'An Experimental Study on the Characteristics of Direct Photoelectric Charging,' Trans. of the KSME (B), Vol. 24, pp. 753-759
  5. Watters Jr., R. L., DeVoe, J. R., Shen, F. H., Small, J. A. and Marinenko, R. B., 1989, 'Characteristics of Aerosols Produced by the Spark Discharge,' Anal. Chem., Vol. 61, pp. 1826-1833 https://doi.org/10.1021/ac00192a009
  6. Helsper, C., Molter, W., Lamer, F., Wadenpohl, C. Kaufmann, S. and Wenninger, G., 1993, 'Investigation of a New Aerosol Generator for the Production of Carbon Aggregate Particles,' Atmos. Environ., Vol. 27A, pp. 1271-1275
  7. Helsper, C., Molter, L., Munzinger, F. and Sturn, W., US patent No. 4,967,958, issued Nov. 6,1990
  8. Brown, J. S., Kim, C. S., Reist, P. C., Zeman, K. L. and Bennett, W. D., 2000, 'Generation of Radiolabeled 'Soot-Like' Ultrafine Aerosols Suitable for Use in Human Inhalation Studies,' Aerosol Sci. Technol., Vol. 32, pp. 325-337 https://doi.org/10.1080/027868200303650
  9. Roth, C, Karg, E. and Heyder, J., 1998, 'Do Inhaled Ultrafine Particles Cause Acute Health Effects in Rats? I: Particle Production,' J. Aerosol Sci., Vol. 29, pp. 8679-8680
  10. Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdorster, G. and Ziesenis, A., 2002, 'Translocation of Ultrafine Insoluble Iridium Particles from Lung Epithelium to Extrapulmonary Organs Is Size Dependent but Very Low,' J. Toxicol. Env. Health, Vol. A65, pp. 1513-1530 https://doi.org/10.1080/00984100290071649
  11. Roth, C, Ferron, G. A., Karg, E., Lentner, B., Schumann, G., Takenaka, S. and Heyder, J., 2004, 'Generation of Ultrafine Particles by Spark Discharging,' Aerosol Sci. Technol., Vol. 38, pp. 228-235 https://doi.org/10.1080/02786820490247632
  12. Saunders, W. A., Sercel, P.C., Lee, R. B., Atwater, H. A., Vahala, K. J., Flagan, R. C. and Escorcia-Aparcio, E. J., 1993, 'Synthesis of Luminescent Silicon Clusters by Spark Ablation,' Appl. Phys. Lett., Vol. 63, pp. 1549-1551 https://doi.org/10.1063/1.110745
  13. Kim, J. T. and Chang, J. S., 2005, 'Generation of Metal Oxide Aerosol Particles by a Pulsed Spark Discharge Technique,' J. Electrostat., Vol. 63, pp. 911-916 https://doi.org/10.1016/j.elstat.2005.03.066
  14. Horvath, H. and Gangl, M., 2003, 'A Low-Voltage Spark Generator for Production of Carbon Particles,' J. Aerosol Sci., Vol. 34, pp. 1581-1588 https://doi.org/10.1016/S0021-8502(03)00193-9
  15. Bazelyan, E. M. and Raizer, Y. P., 1997, Spark Discharge, CRC Press, Boca Raton
  16. Held, B., Soulem, N., Peyrous, R. and Spyrou N., 1997, 'Self-Sustained Conditions in Inhomogeneous Fields,' J. Phys. III France, Vol. 7, pp. 2059-2077 https://doi.org/10.1051/jp3:1997241
  17. Spyrou, N., Peyrous, R., Soulem, N. and Held, B., 1995, 'Why Paschen's Law Does not Apply in LowPressure Gas Discharges with Inhomogeneous Fields,' J. Phys. D, Appl. Phys., Vol. 28, pp. 701-710 https://doi.org/10.1088/0022-3727/28/4/013