• 제목/요약/키워드: Oxygen functional groups

검색결과 216건 처리시간 0.03초

전기이중층 커패시터의 성능에 미치는 산소/질소 함유 관능기들의 영향 (Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor)

  • 김지은;권용갑;이중기;최호석
    • Korean Chemical Engineering Research
    • /
    • 제50권6호
    • /
    • pp.1043-1048
    • /
    • 2012
  • 본 논문에서는 전기이중층 커패시터(EDLC, Electrical Double Layer Capacitor)의 전극소재로 쓰이는 활성탄소의 안정화를 위해 산소함유관능기를 최소화하고 질소함유관능기의 도입을 통해 유기용액계의 전해질을 가지는 EDLC의 축전용량을 개선하는 연구를 하였다. 주사전자현미경(SEM, Scanning Electron Microscopy), 후리에 변환 적외선분광기(FTIR, Fourier Transform Infrared), 자동원소분석기(EA, Elemental Analysis), 보엠(Boehm) 적정법, 충 방전 테스트 등의 분석법을 이용하여 그 결과를 확인하였다. 산 처리를 통하여 산소함유관능기가 도입되고 요소처리를 통하여 질소함유관능기가 도입되었음을 확인하였다. 질소함유관능기 도입을 통하여 EDLC의 g 당 방전용량을 2 mA 상승시켰으며 빠른 속도로 최대 충 방전 성능을 달성하였다. 반면 산소함유관능기는 전해질 속의 전하가 탄소표면에 흡 탈착되는 것을 방해하기 때문에 낮은 방전용량을 보였고, 충 방전 횟수가 늘어남에 따라 방전용량의 큰 감소를 보여주었다.

탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과 (Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery)

  • 김민성;고민성
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

표면처리된 탄소나노튜브의 질소 및 산소관능기 도입에 따른 전기화학적 특성 (Combined effect of nitrogen- and oxygen functional groups on electrochemical performance of surface treated multi-walled carbon nanotubes)

  • 김지일;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.214.1-214.1
    • /
    • 2011
  • In this work, the electrochemical properties of the surface treated multi-walled carbon nanotubes (MWNTs) are investigated for supercapacitors. Nitrogen- and oxygen functional groups containing MWNTs are prepared by nitrogen precursors and acidic treatment, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and Zeta-potential measurements. The electrochemical properties of the MWNTs are investigated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M $H_2SO_4$ at room temperature. As a result, these functionalized MWNTs lead to an increase in the specific capacitance as compared with the pristine MWNTs. It proposes that the pyridinic and pyridinic-N-oxides nitrogen species influence on the specific capacitance due to their positive charges, and thus an improved electron transfer at high current loads, since they are the most important functional groups affecting capacitive behaviors.

  • PDF

Hydrogen Adsorption of Acid-treated Multi-walled Carbon Nanotubes at Low Temperature

  • Lee, Seul-Yi;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1596-1600
    • /
    • 2010
  • Surface functionalization of multi-walled carbon nanotubes (MWNTs) was carried out by means of acid treatment. The presence of oxygen functional groups on the surface of acid-treated MWNTs was confirmed with the aid of Fourier transform infrared spectroscopy and X-ray spectroscopy. In addition, carboxylic groups generally formed on the surface of acid-treated MWNTs, and the dispersion was increased by the duration of the acid treatment. The zeta-potential indicated the surface charge transfer and the dispersion of MWMTs. Morphological characteristics of acid-treated MWNTs were also observed using a transmission electron microscopy, X-ray diffraction, and Raman analysis, which was revealed the significantly unchanged morphologies of MWNTs by acid treatment. The hydrogen adsorption capacity of the MWNTs was evaluated by means of adsorption isotherms at 77 K/1 atm. The hydrogen storage capacity was dependent upon the acid treatment conditions and the formation of oxygen functional groups on the MWNT surfaces. The latter have an important effect on the hydrogen storage capacity.

Irreversible luminescence from graphene quantum dots prepared by the chain of oxidation and reduction process

  • Jang, Min-Ho;Ha, Hyun Dong;Lee, Eui-Sup;Kim, Yong-Hyun;Seo, Tae Seok;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.222.1-222.1
    • /
    • 2015
  • Recently, graphene quantum dots (GQDs) have attracted great attention due to various properties including cost-effectiveness of synthesis, low toxicity, and high photostability. Nevertheless, the origins of photoluminescence (PL) from GQDs are unclear because of extrinsic states of the impurities, disorder structures, and oxygen-functional groups. Therefore, to utilize GQDs in various applications, their optical properties generated from the extrinsic states should be understood. In this work, we have focused on the effect of oxygen-functional groups in PL of the GQDs. The GQDs with nanoscale and single layer are synthesized by employing graphite nanoparticles (GNPs) with 4 nm. The series of GQDs with different amount of oxygen-functional groups were prepared by the chain of chemical oxidation and reduction process. The fabrication of a series of graphene oxide QDs (GOQDs) with different amounts of oxygen-contents is first reported by a direct oxidation route of GNPs. In addition, for preparing a series of reduced GOQDs (rGOQDs), we employed the conventional chemical reduction to GOQDs solution and controlled the amount of reduction agents. The GOQDs and rGOQDs showed irreversible PL properties even though both routes have similar amount of oxyen-functional groups. In the case of a series of GOQDs, the PL spectrum was clearly redshifted into blue and green-yellowish color. On the other hand, the PL spectrum of rGOQDs did not change significantly. By various optical measurement such as the PL excitation, UV-vis absorbance, and time-resolved PL, we could verify that their PL mechanisms of GOQDs and rGOQDs are closely associated with different atomic structures formed by chemical oxidation and reduction. Our study provides an important insights for understanding the optical properties of GQDs affected by oxygen-functional groups. [1]

  • PDF

Activated Carbons as Electrode Materials in Electric Double-Layer Capacitors I. Electrochemical Properties of Activated Carbons in Relation to their Porous Structures and Surface Oxygen Functional Groups

  • Kim, Chang-Hee;Pyun, Su-Il
    • 한국세라믹학회지
    • /
    • 제40권9호
    • /
    • pp.819-826
    • /
    • 2003
  • This article is concerned with the overview of activated carbons as electrode materials in electric double-layer capacitors. Firstly, this article introduced various types of activated carbons with their precursors and manufacturing conditions which can be divided into two main steps of the carbonization and activation processes. Secondly, the present article gave the detailed discussion about the porous structures and examined previous works on the electrochemical behaviors of activated carbons in relation to their porous structures, along with our recent works. Finally, this article characterized the surface oxygen functional groups and presented their influence on the electrochemical properties of activated carbons by reviewing our recent results.

다중 기능성 그룹을 포함하는 마이크로포어 탄소의 합성 및 전기화학적 특성 (Synthesis of microporous carbons containing multi-functional groups and their electrochemical performance)

  • 김기석;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.94.2-94.2
    • /
    • 2011
  • In this work, multi-functional groups, i.e., nitrogen and oxygen, contained microporous carbons (MF-MCs) were prepared by the one step carbonization of the poly(vinylidene chloride-co-acrylonitrile-co-methyl methacryalte) (PVDC-AN-MMA) without activation. The electrochemical performance of MF-MCs was investigated as a function of carbonization temperature. It was found that MF-MCs had a high specific surface area over $800m^2/g$ without additional activation, resulting from the micropore's formation by the release of chlorine groups. In addition, although functional groups decreased, specific surface area was increased with increasing carbonization temperature, leading to the enhanced electrochemical performance. The pore size of the carbon distributed mainly in small micropore of 1.5 to 2 nm, which was idal for aqueous electrolyte. Indeed, the unique microstructure features, i.e. high specific surface area and optimized pore size provided high energy storage capability of MF-MCs. These results indicated that the microporous features of MF-MCs lead to feasible electron transfer during charge/discharge duration and the presence of nitrogen and oxygen groups on the MF-MCs electrode led to a pseudocapacitive reaction.

  • PDF

Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons

  • Yoo, Hye-Min;Lee, Seul-Yi;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.112-115
    • /
    • 2011
  • The scope of this work investigates the relationship between the amount of oxygen-functional groups and hydrogen adsorption capacity with different concentrations of phosphoric acid. The amount of oxygen-functional groups of activated carbons (ACs) is characterized by X-ray photoelectron spectroscopy. The effects of chemical treatments on the pore structures of ACs are investigated by $N_2$/77 K adsorption isotherms. The hydrogen adsorption capacity is measured by $H_2$ isothermal adsorption at 298 K and 100 bar. In the results, the specific surface area and pore volume slightly decreased with the chemical treatments due to the pore collapsing behaviors, but the hydrogen storage capacity was increased by the oxygen-functional group characteristics of AC surfaces, resulting from enhanced electron acceptor-donor interaction at interfaces.

그래핀 산화물 소자에서의 산소 작용기 이동 연구 (Investigation of Oxygen Functional Group Movement in Graphene Oxide Devices)

  • 기은희;;전지훈;최진식;박배호
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.100-104
    • /
    • 2023
  • In this study, a device was fabricated to check the possibility of a memory device by controlling the oxygen functional groups in graphene oxide formed with a 45-second exposure time. We discovered that graphene oxide can be formed using the ultraviolet (UV) light treatment method with different exposure times. Moreover, Raman spectroscopy measurement revealed that the oxygen functional groups can be moved by controlling the voltage. We further studied the change in the local graphene oxide region, which was found to be related to the modulation of the electrical properties of the device. Therefore, the fabricated graphene oxide device can be used as a wettability switching membrane and graphene-based ion transport device.

활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성 (Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules)

  • 송은지;김민지;한정인;최예지;이영석
    • 공업화학
    • /
    • 제30권2호
    • /
    • pp.160-166
    • /
    • 2019
  • 본 연구에서는 새집증후군 유발 가스인 초산 가스에 대한 활성탄소섬유의 흡착 성능을 향상시키기 위하여, 산소플라즈마 처리를 통해 활성탄소섬유에 산소작용기를 도입하였다. 산소플라즈마 처리 시 주입되는 산소 가스의 유량이 증가할수록 산소플라즈마 활성종이 더 많이 생성되었다. 이로 인해 물리적 및 화학적인 식각이 더 많이 발생하여 활성탄소섬유의 비표면적이 감소하였다. 특히, 60 sccm의 산소 가스 유량이 주입된 시료(A-O60)의 비표면적의 경우 미처리 시료와 비교하여 약 6.95% 감소된 $1.198m^2/g$까지 감소하였다. 반면, 산소플라즈마 처리 시 주입되는 산소 가스의 유량이 증가할수록 활성탄소섬유 표면에 도입되는 산소 함량이 증가하였으며, 최대 35.87%까지 도입되었음을 확인하였다. 또한, 산소플라즈마 처리된 활성탄소섬유의 초산 가스 흡착 성능은 미처리 활성탄소섬유 대비 최대 43% 향상되었다. 이것은 산소플라즈마 처리에 의해 도입되는 O=C-O와 같은 산소작용기와 초산 분자 사이의 쌍극자 모멘트에 의한 수소결합 형성에 기인한다.