DOI QR코드

DOI QR Code

Hydrogen Adsorption of Acid-treated Multi-walled Carbon Nanotubes at Low Temperature

  • Received : 2009.03.26
  • Accepted : 2010.03.25
  • Published : 2010.06.20

Abstract

Surface functionalization of multi-walled carbon nanotubes (MWNTs) was carried out by means of acid treatment. The presence of oxygen functional groups on the surface of acid-treated MWNTs was confirmed with the aid of Fourier transform infrared spectroscopy and X-ray spectroscopy. In addition, carboxylic groups generally formed on the surface of acid-treated MWNTs, and the dispersion was increased by the duration of the acid treatment. The zeta-potential indicated the surface charge transfer and the dispersion of MWMTs. Morphological characteristics of acid-treated MWNTs were also observed using a transmission electron microscopy, X-ray diffraction, and Raman analysis, which was revealed the significantly unchanged morphologies of MWNTs by acid treatment. The hydrogen adsorption capacity of the MWNTs was evaluated by means of adsorption isotherms at 77 K/1 atm. The hydrogen storage capacity was dependent upon the acid treatment conditions and the formation of oxygen functional groups on the MWNT surfaces. The latter have an important effect on the hydrogen storage capacity.

Keywords

References

  1. Schlapbch, L.; Zuttel, A. Nature 2001, 414, 353. https://doi.org/10.1038/35104634
  2. Li, Y.; Zhao, D.; Wang, Y.; Xue, R.; Shen, Z.; Li, X. Int. J. Hydrogen Energy 2006, 32, 2513.
  3. Peles, A.; van de Walle C, G. Phys. Rev. B 2007, 76, 214101. https://doi.org/10.1103/PhysRevB.76.214101
  4. Shindo, K.; Kondo, T.; Sakurai, Y. J. Alloy Compd. 2004, 372, 201. https://doi.org/10.1016/j.jallcom.2003.08.103
  5. Mu, S. C.; Tang, H. L.; Qian, S. H.; Pan, M.; Yuan, R. Z. Carbon 2006, 44, 762. https://doi.org/10.1016/j.carbon.2005.09.010
  6. Endo, M.; Kroto, H. W. J. Phys. Chem. 1992, 96, 6941. https://doi.org/10.1021/j100196a017
  7. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Chem. Phys. Lett. 1992, 195, 537. https://doi.org/10.1016/0009-2614(92)85559-S
  8. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95. https://doi.org/10.1126/science.282.5386.95
  9. Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriquez- Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253. https://doi.org/10.1126/science.280.5367.1253
  10. Zhong, Z. Y.; Xiong, Z. T.; Sun, L. F.; Luo, J. Z.; Chen, P.; Wu, X.; Lin, H.; Tan, K. L. J. Phys. Chem. B 2002, 106, 9507. https://doi.org/10.1021/jp020151j
  11. Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. J. Phys. Chem. B 2003, 107, 3712. https://doi.org/10.1021/jp027500u
  12. Kim, Y. T.; Mitani, T. J. Power Sources 2006, 158, 1517. https://doi.org/10.1016/j.jpowsour.2005.10.069
  13. Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Mater. Sci. Eng. A 2007, 464, 151. https://doi.org/10.1016/j.msea.2007.02.091
  14. Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2007, 311, 619. https://doi.org/10.1016/j.jcis.2007.03.049
  15. Cao, L.; Chen, H.; Wang, M.; Sun, J.; Zhang, X.; Kong, F. J. Phys. Chem. B 2002, 106, 8971. https://doi.org/10.1021/jp020680n
  16. Yu, H.; Jin, Y.; Peng, F.; Wang, H.; Yang, J. J. Phys. Chem. C 2008, 112, 6758. https://doi.org/10.1021/jp711975a
  17. Meng, H.; Sui, G. X.; Fang, P. F.; Yang, R. Polymer 2008, 49, 610. https://doi.org/10.1016/j.polymer.2007.12.001
  18. Yue, Z. R.; Wang, W. J.; Gardner, S. D.; Pittman, C. U. Carbon 1999, 37, 1785. https://doi.org/10.1016/S0008-6223(99)00047-0
  19. Xu, R.; Wu, C.; Xu, H. Carbon 2007, 45, 2806. https://doi.org/10.1016/j.carbon.2007.09.010
  20. Cuervo, M. R.; Esther, A. N.; Eva, D.; Ordonez, S.; Vega, A.; Ana, B. D.; Inmaculada, R. R. Carbon 2008, 46, 2096. https://doi.org/10.1016/j.carbon.2008.08.025
  21. Shen, J. F.; Hu, Y. Z.; Qin, C.; Ye, M. X. Langmuir 2008, 24, 3993. https://doi.org/10.1021/la703957t
  22. Liu, H.; Wang, X.; Fang, P.; Wang, S.; Qi, X.; Pan, C.; Xie, G.; Liew, K. M. Carbon 2010, 48, 721. https://doi.org/10.1016/j.carbon.2009.10.018
  23. Zhao, N.; He, C.; Li, J.; Jiang, Z.; Li, Y. Mater. Res. Bull. 2006, 41, 2204. https://doi.org/10.1016/j.materresbull.2006.04.029
  24. Osorio, A. G.; Silveira, I. C. L.; Bueno, V. L.; Bergmann, C. P. Appl. Surf. Sci. 2008, 255, 2485. https://doi.org/10.1016/j.apsusc.2008.07.144
  25. Li, M.; Boggs, M.; Beebe, T. P.; Huang, C. P. Carbon 2008, 46, 466. https://doi.org/10.1016/j.carbon.2007.12.012
  26. Leddy, L. M.; Ramaprabhu, S. Int. J. Hydrogen Energy 2007, 32, 3998. https://doi.org/10.1016/j.ijhydene.2007.04.048

Cited by

  1. Effect of Surfactant on Rheological and Electrical Properties of Latex-Blended Polystyrene/Single-Walled Carbon Nanotube Nanocomposites vol.36, pp.3, 2012, https://doi.org/10.7317/pk.2012.36.3.364
  2. A DFT study on electronic structure and local reactivity descriptors of pristine and carbon-substituted AlN nanotubes vol.91, pp.8, 2013, https://doi.org/10.1139/cjc-2013-0103
  3. Fabrication of flexible conducting thin films of copper-MWCNT from multi-component aqueous suspension by electrodeposition vol.18, pp.2, 2014, https://doi.org/10.1007/s10008-013-2279-9
  4. Effect of dispersion condition of multi-walled carbon nanotube (MWNT) on bonding properties of solderable isotropic conductive adhesives (ICAs) vol.25, pp.12, 2014, https://doi.org/10.1007/s10854-014-2290-7
  5. Electrical and mechanical properties of multiwalled carbon nanotubes-reinforced solderable polymer nanocomposites vol.26, pp.3, 2015, https://doi.org/10.1007/s10854-014-2592-9
  6. A review: role of interfacial adhesion between carbon blacks and elastomeric materials vol.18, 2016, https://doi.org/10.5714/CL.2016.18.001
  7. Multinanosensors Based on MWCNTs and Biopolymer Matrix - Production and Characterization vol.132, pp.4, 2017, https://doi.org/10.12693/APhysPolA.132.1251
  8. Utilizing Fullerenols as Surfactant for Carbon Nanotubes Dispersions Preparation vol.2017, pp.2314-4874, 2017, https://doi.org/10.1155/2017/4387391
  9. Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT) - epoxy adhesive for thermal conductivity applications vol.28, pp.12, 2017, https://doi.org/10.1007/s10854-017-6621-3
  10. 라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향 vol.34, pp.6, 2010, https://doi.org/10.7317/pk.2010.34.6.534
  11. Effect of platinum doping of activated carbon on hydrogen storage behaviors of metal-organic frameworks-5 vol.36, pp.14, 2010, https://doi.org/10.1016/j.ijhydene.2011.03.038
  12. Modelling and optimization ofCandida rugosananobioconjugates catalysed synthesis of methyl oleate by response surface methodology vol.29, pp.6, 2010, https://doi.org/10.1080/13102818.2015.1078744
  13. UV-irradiated carbon nanotubes synthesized from fly ash for adsorption of congo red dyes in aqueous solution vol.57, pp.45, 2016, https://doi.org/10.1080/19443994.2015.1123192