Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.6.1596

Hydrogen Adsorption of Acid-treated Multi-walled Carbon Nanotubes at Low Temperature  

Lee, Seul-Yi (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Abstract
Surface functionalization of multi-walled carbon nanotubes (MWNTs) was carried out by means of acid treatment. The presence of oxygen functional groups on the surface of acid-treated MWNTs was confirmed with the aid of Fourier transform infrared spectroscopy and X-ray spectroscopy. In addition, carboxylic groups generally formed on the surface of acid-treated MWNTs, and the dispersion was increased by the duration of the acid treatment. The zeta-potential indicated the surface charge transfer and the dispersion of MWMTs. Morphological characteristics of acid-treated MWNTs were also observed using a transmission electron microscopy, X-ray diffraction, and Raman analysis, which was revealed the significantly unchanged morphologies of MWNTs by acid treatment. The hydrogen adsorption capacity of the MWNTs was evaluated by means of adsorption isotherms at 77 K/1 atm. The hydrogen storage capacity was dependent upon the acid treatment conditions and the formation of oxygen functional groups on the MWNT surfaces. The latter have an important effect on the hydrogen storage capacity.
Keywords
MWNT; Acid treatment; Hydrogen adsorption; Oxygen-functional groups;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Schlapbch, L.; Zuttel, A. Nature 2001, 414, 353.   DOI
2 Li, Y.; Zhao, D.; Wang, Y.; Xue, R.; Shen, Z.; Li, X. Int. J. Hydrogen Energy 2006, 32, 2513.
3 Peles, A.; van de Walle C, G. Phys. Rev. B 2007, 76, 214101.   DOI
4 Shindo, K.; Kondo, T.; Sakurai, Y. J. Alloy Compd. 2004, 372, 201.   DOI
5 Mu, S. C.; Tang, H. L.; Qian, S. H.; Pan, M.; Yuan, R. Z. Carbon 2006, 44, 762.   DOI
6 Osorio, A. G.; Silveira, I. C. L.; Bueno, V. L.; Bergmann, C. P. Appl. Surf. Sci. 2008, 255, 2485.   DOI
7 Li, M.; Boggs, M.; Beebe, T. P.; Huang, C. P. Carbon 2008, 46, 466.   DOI
8 Leddy, L. M.; Ramaprabhu, S. Int. J. Hydrogen Energy 2007, 32, 3998.   DOI
9 Zhao, N.; He, C.; Li, J.; Jiang, Z.; Li, Y. Mater. Res. Bull. 2006, 41, 2204.   DOI
10 Liu, H.; Wang, X.; Fang, P.; Wang, S.; Qi, X.; Pan, C.; Xie, G.; Liew, K. M. Carbon 2010, 48, 721.   DOI
11 Endo, M.; Kroto, H. W. J. Phys. Chem. 1992, 96, 6941.   DOI
12 Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Chem. Phys. Lett. 1992, 195, 537.   DOI
13 Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.   DOI
14 Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriquez- Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253.   DOI
15 Zhong, Z. Y.; Xiong, Z. T.; Sun, L. F.; Luo, J. Z.; Chen, P.; Wu, X.; Lin, H.; Tan, K. L. J. Phys. Chem. B 2002, 106, 9507.   DOI
16 Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. J. Phys. Chem. B 2003, 107, 3712.   DOI
17 Kim, Y. T.; Mitani, T. J. Power Sources 2006, 158, 1517.   DOI
18 Cao, L.; Chen, H.; Wang, M.; Sun, J.; Zhang, X.; Kong, F. J. Phys. Chem. B 2002, 106, 8971.   DOI
19 Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Mater. Sci. Eng. A 2007, 464, 151.   DOI
20 Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2007, 311, 619.   DOI
21 Yu, H.; Jin, Y.; Peng, F.; Wang, H.; Yang, J. J. Phys. Chem. C 2008, 112, 6758.   DOI
22 Meng, H.; Sui, G. X.; Fang, P. F.; Yang, R. Polymer 2008, 49, 610.   DOI
23 Yue, Z. R.; Wang, W. J.; Gardner, S. D.; Pittman, C. U. Carbon 1999, 37, 1785.   DOI
24 Xu, R.; Wu, C.; Xu, H. Carbon 2007, 45, 2806.   DOI
25 Cuervo, M. R.; Esther, A. N.; Eva, D.; Ordonez, S.; Vega, A.; Ana, B. D.; Inmaculada, R. R. Carbon 2008, 46, 2096.   DOI
26 Shen, J. F.; Hu, Y. Z.; Qin, C.; Ye, M. X. Langmuir 2008, 24, 3993.   DOI