• Title/Summary/Keyword: Oxygen exposure

Search Result 582, Processing Time 0.025 seconds

Oxygen Toxicity: Behavioral Assessment by Swim Test in Mouse Exposed to Hypoxia and Hyperoxia (수영 시험 모델에서 산소 농도에 따른 운동성 변화와 독성 평가)

  • 김동희;강문철;김재일;이근호;김광열;김형건
    • Toxicological Research
    • /
    • v.19 no.2
    • /
    • pp.99-104
    • /
    • 2003
  • This study was aimed to evaluate the effect of oxygen on motor activity and toxicity in male mice. The modified Porsolt forced swim test (FST) was used and the distance and time of movement by mice were analyzed in 15。C water bath for 20 minutes using the automatic Ethovision videotracking system. Analyses were carried out before and after 20 minutes of exposure to 10%-70% concentration of normobaric oxygen. The effects of inspired oxygen tension on the distance and time of movement showed the similar trends, but changes in distance were more prominent. Both the distance and time of movement increased after exposure to 30% and 40% oxygen concentration. The distance and time of movement also increased upon exposure to 50% and 60% oxygen. In contrast, increases En movement and time under exposure to 21% oxygen concentration were suppressed when exposed to over 50% oxygen concentration. With exposure to 10% oxygen, there was a significant decrease in the distance of movement and a slight suppression of movement time. During the swim test, 12.5%, 37.5%, and 87.5% of the mice drowned after exposure to 10%, 60%, and 70% oxygen concentration, respectively. These results suggest that motor activity can be enhanced by inspired oxygen up to 40% concentration. When hypoxic and hyperoxic oxygen exposure over 50%, motor activity is reduced and toxicity may be induced.

Adsorption of Oxygen and Segregation of Impurity on Copper Surface(polycrystal): An AES Study (다결정 구리 표면에서 산소 흡착과 불순물 표면적출 : AES에 의한 연구)

  • Byoung Sung Han
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.966-971
    • /
    • 1988
  • AES was used to study oxygen adsorption due to the oxygen exposure at 300\ulcorner temperature and segregation of impurities due to annealing on polycrystal copper surface. The intensity of peak of CuM2, 3VV and CuL3 VV increased with annealing time and the peak of CKLL increased after Ar ion bombardment. The effect of oxygen adsorption on copper surface at 300\ulcorner was verified by the decreased of peak of CuM2, 3VV and CuL3 VV as oxygen exposure increase. The binding energy of copper atoms gradualy shifts from 0.7eV to 1.5eV of copper atoms gradually shifts from 0.7eV to 1.5eV after a oxygen exposure. After the oxygen exposure, the width at half the height of CuM2, 3VV is larger 2V*C/S by the effect of chemical liaison of the copper aton with oxygen atom.

  • PDF

Effects of Hyperoxia on 8-Hydroxydeoxyguanosine Formation in Carbon Monoxide Exposed Rats (일산화탄소 중독시 고압산소투여가 8-hydroxydeoxyguanosine 생성에 미치는 영향)

  • Kim, Heon;Cho, Soo-Hun;Chung, Myung-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.84-106
    • /
    • 1994
  • Hyperbaric oxygen (HBO) therapy for carbon monoxide (CO) poisoning eventually inducing the hypoxia-reoxygenation condition, may produce oxygen free radicals, which forms 8-hydroxydeoxyguanosine (8-OH-dG) by attacking C-8 position of deoxyguanosine (dG) in DNA. Effects of oxygen partial pressure or duration of HBO therapy with or without CO poisoning on the tissue 8-OH-dG formation were investigated. Male Sprague-Dawley rats were grouped and exposed to air (control group), 4000 ppm of CO for 10 to 30 minutes (CO only group), air for 30 minutes after 30 minute exposure to 4000 ppm of CO(CO-air exposure group), HBO after 30 minute exposure to 4000 ppm of CO(CO-HBO group), or HBO therapy fo. $10{\sim}120$ minutes(HBO only group). The 8-OH-4G concentrations in the brain and the lung tissues were measured with high performance liquid chromatography and electrochemical detector (ECD). Average concentrations of the 8-OH-dG of each group were statistically compared. In the brain tissues, 8-OH-dG concentrations of the CO only group, the CO-air exposure group, and the CO-HBO group did not significantly differ from those of the control group. Similar insignificance was also found between the CO-HBO group and the HBO only groups. No appreciable dose-response relationship was observed between the 8-OH-dG concentration and the oxygen partial pressure or the duration of HBO. However, the 8-OH-dG concentrations of the 30 minute CO only group were higher than those of the CO-air exposure group (p-value<0.05). In the lung tissues, there were no significant differences between the 8-OH-dG concentrations of the control group and those of the CO only group, the CO-air exposure group, and the CO-HBO group. However, mean 8-OH-dG concentration of the CO-air exposure group was significantly higher than that of the CO only group under the same CO exposure condition(p-value<0.05). With the duration of CO exposure, the 8-OH-dG concentrations of the lung tissues decreased significantly (p-value<0.05). The concentrations of 8-OH-dG in the lung tissues proportionally increased with the duration of HBO, but no such relation was observed with the oxygen partial pressure. These results suggest that the brain may be more resistant to oxygen free radicals as compared with the lungs, and that oxygen toxicity following HBO may be affected by factors other than oxygen free radicals.

  • PDF

XPS Studies of Oxygen Adsorption on Polycrystalline Nickel Surface

  • Lee, Soon-Bo;Boo, Jin-Hyo;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.358-362
    • /
    • 1987
  • The interaction of oxygen with polycrystalline nickel surface has been studied by investigating the X-ray photoelectron spectra of O 1s, Ni $2p_{3/2}$, and their valence band electrons. By comparing the oxygen exposure of this work with the reported results of LEED, AES, and work function measurements, it is found that the atomic oxygen, adsorbed dissociatively in the initial stage of exposure, is responsible for a p(2 ${\times}$ 2) structure and a subsequent c(2 ${\times}$ 2) structure on the Ni(100) surface. This dissociatively adsorbed oxygen species forms surface NiO layer subsequently on further oxygen exposure. The NiO layer is more easily formed with the increasing temperature. Non-stoichiometric oxygen species is also found to accompany the NiO layer. It appears prior to the formation of bulk NiO at all of the temperatures of this work except at 523K.

Proportion of Surviving and Physiological Changes of Granular ark, Tegillarca granosa to Air Exposure

  • Shin, Yun-Kyung;Moon, Tae-Seok
    • The Korean Journal of Malacology
    • /
    • v.22 no.2
    • /
    • pp.151-155
    • /
    • 2006
  • Proportion of Tegillarca granosa surviving after 2-6 hrs air exposure with 12 hrs interval at $20^{\circ}C$ and $28^{\circ}C$ for 20 days showed 85-100%, 80-100%, respectively. The survival rate was somewhat lower at high temperature but not significant (p < 0.05). Subsequent exposures for 7-9 days showed survival rate of 8.0-24.1% at $20^{\circ}C$ and $28^{\circ}C$. Oxygen consumption rates and filtration rates were significantly higher for 4 to 6 hrs exposures, compared with the preceding exposures. On the other hand, at $28^{\circ}C$, oxygen consumption rates in adult granular ark for 6 hrs exposure during 20 days had significantly decreased. Filtration rates in study groups increased a little over extended period of exposure, compared with those in control groups, and were similar irrelevant to the time of exposure and size of experimental animals. It is concluded, in view of their viability and oxygen consumption rate during air exposure, that ark shells have quite a high resistance to air exposure with their limited range of responses.

  • PDF

Effects of Short-Term Oxygen Exposure on Anaerobic Reductive Dechlorination and Formate Fermentation by Evanite Culture (혐기성탈염소화 혼합균주에서 산소 노출이 탈염소화 및 수소발생 발효에 미치는 영향)

  • Hong, Ui-Jeon;Park, Sun-Hwa;Lim, Jong-Hwan;Ahn, Hong-Il;Kim, Nam-Hee;Lee, Suk-Woo;Kim, Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.114-121
    • /
    • 2010
  • Oxygen sensitivity and substrate requirement have been known as possible reasons for the intricate growth of Dehalococcoides spp. and limiting factors of for routinely applying bioaugmentation using anaerobic Dehalococcoides-containing microbes for remediating chlorinated organic compounds. To explore the effect of the short-term exposure of the short-term exposure of oxygen on Dehalococcoides capability, dechlorination performance, and hydrogen production fermentation from formate, an anaerobic reductive dechlorination mixed-culture (Evanite culture) including dehalococcoides spp. was in this study. In the results, once the mixed-culture were exposed to oxygen, trichloroethylene (TCE) degradation rate decreased and it was not fully recovered even addition of excess formate for 40 days. In contrast, hydrogen was continuously produced by hydrogen-fermentation process even under oxygen presence. The results indicate that although the oxygen-exposed cells cannot completely dechlorinate TCE to ethylene (ETH), hydrogen fermentation process was not affected by oxygen presence. These results suggest that dechlorinating microbes may more sensitive to oxygen than fermenting microbes, and monitoring dechlorinators activity may be critical to achieve an successful remediation of a TCE contaminated-aquifer through bioaugmentation using Dehalococcoides spp..

Microstructural Analysis on Oxide Film of Al2024 Exposed to Atmospheric Conditions (대기 노출된 Al2024 알루미늄 합금 산화막에 대한 미세조직 분석)

  • Kwon, Daeyeop;Choi, Wonjun;Bahn, Chi Bum
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.62-70
    • /
    • 2021
  • Al2024 aluminum alloy specimens were exposed to atmospheric conditions for maximum 24 months and analyzed by electron microscopes to characterize their corrosion behavior and oxide film characteristics. As the exposure time increased from 12 months to 24 months, the number of pitting sites per 1 mm2 increased from ~100 to ~200. The uniform oxidation (or non-pitting) region of the 12-month exposure specimen showed 30~120 nm thick oxide layer, whereas the 24-month exposure specimen showed 170~200 nm thick oxide with the local oxygen penetration region up to 1 ㎛ deep. There was no local corrosion area observed in the 12-month exposure specimen except pitting. However, in the 24-month exposure specimen, local oxygen penetration region was observed beneath the uniform oxide layer and near the pitting cavity. Al2024 showed two times thicker uniform oxide layer but much shallower local oxygen penetration region than Al1050, which appears to be related to low Si concentration. Further research is needed on the effects of Mg segregation near the tip of the oxygen penetration region.

Adsorption of molecular oxygen and $SO_2$ on Ni(100)

  • Hyunsukl Jeong;Changmin;Kim, Eunha;Hojun Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.180-180
    • /
    • 1999
  • The interaction of oxygen with a Ni(100) surface has been investigated using X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique. Below 200L oxygen exposure, molecular oxygen was dissociated to atomic oxygen. Increasing oxygen exposure, -1s binding energy shifted from 531.0 eV to 533.0 eV due to molecular adsorption. The presence of molecular oxygen species was confirmed by NEXAFS. Molecular oxygen adsorbed on Ni(100) was oriented perpendicular to the surface. Upon heating over 150K molecular adsorbed oxygen surface was also analyzed using NEEXFS.

  • PDF

Automatic Control of Fraction of Inspired Oxygen in Neonatal Oxygen Therapy using Fuzzy Logic Control

  • Chanyagorn, Pornchai;Kiratiwudhikul, Phattaradanai
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Premature babies of less than 37 weeks gestation might require oxygen therapy as an integral part of treatment and respiratory support. Because of their under-developed lungs, these so-called "preemies" might contract respiratory distress syndrome (RDS). To treat RDS, neonatal oxygen therapy is administered, where controlled oxygen gas is measured as a fraction of inspired oxygen ($FiO_2$). However, exposure to high oxygen content during long treatment could cause oxygen intoxication, which might cause permanent blindness due to retinopathy of prematurity (ROP), whereas insufficient oxygen exposure could cause severe hypoxia. A doctor would use oxygen saturation ($SpO_2$) data and prescribe a dose of $FiO_2$ to maintain $SpO_2$ within a suitable range. One objective is to maintain $SpO_2$ within the acceptable range using $FiO_2$ that is as low as possible. Adjustment of $FiO_2$ would normally be done by nurses every 15 to 30 minutes, which might not be safe in many situations. An error in $FiO_2$ adjustment during a manual procedure could be as large as +/- 2.5%. This paper presents a system that can determine an $FiO_2$ value suitable to the current $SpO_2$ and that automatically adjusts $FiO_2$ with an error clearance of +/- 0.25%.

Effect of Cold Exposure on Thyroid Thermogenesis in Rats (한냉에 노출된 흰쥐에서 갑상선 호르몬이 체열 생산인 미치는 영향)

  • 황애란
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.2
    • /
    • pp.87-104
    • /
    • 1983
  • It has been well documented that animals exposed to cold show increased activity of thyroid gland. The calorigenic action of thyroid hormone has been demonstrated by a variety of in vivo and in vitro studies. According to Edelman et al., the thyroid thermogenesis is due to activation of energy consuming processes, especially the active sodium transport by the hormone in target tissues. If so, the increase in thyroid activity during cold exposure should induce increased capacity of sodium transport in target tissue and the change in tissue metabolism should be precisely correlated with the change in Na+_K+_ATPase activity of the tissue. This possibility was tested in the present study: in one series, changes in oxygen consumption and Na+_K+_-ATPase activity of liver preparations were measured in rats as a function of thyroid status, in order to establish the effect of thyroid hormone on the tissue respiration and enzyme system in another series, the effect of cold stimulus on the serum thyroid hormone level, hepatic tissue oxygen consumption and Na+_K+_ATPase activity in rats. The results obtained are as follows: 1. The Na+_dependent oxygen consumption of liver slices, the oxygen consumption of liver mitochondria and the Na+_K+_ATPase activity of liver preparations were significantly inhibited in hypothyroidism and activated in hyperthyroidism. Kinetic analysis indicated that the Vmax. of Na+_K+_ATPase was decreased in hypothyroidism and increased in hyperth)'roidism. 2. In cold exposed rats, the serum triiodothyronine (T₃) level increased rapidly during the initial one day of cold exposure, then declined slowly to the control level after two weeks. The serum thyroxine (T₄) level decreased gradually throughout the cold exposure. Accordingly the T₃/T₄ratio increased. The mitochondrial oxygen consumption and the Na+_dependent oxygen consumption of liver slices increased during the first two days and then remained unchanged thereafter The activity of the Na+_K+_ATPase in liver preparations increased during cold exposure with a time course similar to that of oxygen consumption. Kinetic analysis indicated that the Vmax. of Na+_K+_ATPase increased. 3. Once the animal was adapted to cold, induction of hypothyroidism did not significantly alter the hepatic oxygen consumption and Na+_K+_ATPase activity. These results indicate that: 1) thyroid hormone increases capacities of mitochondrial respiration and active sodium transport in target tissues such as liver; 2) the increased T₃level during the initial period of cold exposure facilitates biosynthesis of Na+_K+_ATPase and mitochondrial enzymes for oxidative phosphorylation, leading to enhanced production and utilization of ATP, hence heat production.

  • PDF