• Title/Summary/Keyword: Oxygen doping

Search Result 193, Processing Time 0.037 seconds

Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y Glass Electrolytes (Li1+xFexTi2-x(PO4)3-y(BO3)y 계 유리 전해질에서 Fe 및 BO3 치환 효과)

  • Choi, Byung-Hyun;Jun, Hyung Tak;Yi, Eun Jeong;Hwang, Haejin
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.52-64
    • /
    • 2021
  • The effect of Fe and BO3 doping on structure, thermal, and electrical properties of Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)-based glass and glass ceramics was investigated. In addition, their crystallization behavior during sintering and ionic conductivity were also investigated in terms of sintering temperature. FT-IR and XPS results indicated that Fe2+ and Fe3+ ions in Li1+xFexTi2-x(PO4)3-y(BO3)y glass worked as a network modifier (FeO6 octahedra) and also as a network former (FeO4 tetrahedra). In the case of the glass with low substitution of BO3, boron formed (PB)O4 network structure, while boron preferred BO3 triangles or B3O3 boroxol rings with increasing the BO3 content owing to boic oxide anomaly, which can result in an increased non-bridging oxygen. The glass transition temperature (GTT) and crystallization temperature (CT) was lowered as the BO3 substitution was increased, while Fe2+ lowered the GTT and raised the CT. The ionic conductivity of Li1+xFexTi2-x(PO4)3-y(BO3)y glass ceramics were 8.85×10-4 and 1.38×10-4S/cm for x = 0.2 and 0.5, respectively. The oxidation state of doped Fe and boric oxide anomaly were due to the enhanced lithium ion conductivity of glass ceramics.

Photoelectrochemical Performance of Hematite Nanoparticles Synthesized by a DC Thermal Plasma Process (DC 열플라즈마를 이용하여 제조된 산화철 나노입자의 광 전기화학적 물분해 효율 증가연구)

  • Lee, Chulho;Lee, Dongeun;Kim, Sunkyu;Yoo, Hyeonseok;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.306-310
    • /
    • 2015
  • In this research, hematite nanoparticles were synthesized by DC thermal plasma process to increase the overall surface area. The effect of binders on hematite electrodes was investigated by changing the type and composition of binders when preparing electrodes. Nitrogen gas was also added to the DC thermal plasma process in order to dope the hematite with N for enhancing photoelectrochemical properties of hematite nanoparticles. The efficiency of water splitting reaction was measured by linear sweep voltammetry (LSV) under solar simulator. In LSV measurements, the onset potential and maximum current density at a fixed voltage were measured. The durability of electrodes was checked by repeating LSV measurements. CMC (carboxymethyl cellulose) binder with 50 : 1 composition exhibits the highest current density of $12mA/cm^2$ and CMC binder with 20 : 1 composition, showing the initial current density of $3mA/cm^2$, endures 20 times of repetitive LSV measurements. Effects of nitrogen doping on hematite nanoparticles were proven to be insignificant.

Sintering and Electrical Properties According to Sb/Bi Ratio(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.682-688
    • /
    • 2012
  • In this study we aimed to examine the co-doping effects of 1/6 mol% $Co_3O_4$ and 1/4 mol% $Cr_2O_3$ (Co:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Co,Cr-doped ZBS, ZBS(CoCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were formed in all systems. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 by Cr rather than Co. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(CoCr), the varistor characteristics were improved (non-linear coefficient, ${\alpha}$ = 20~63), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to be composed of an electrically single barrier (0.94~1.1 eV) that is, however, somewhat sensitive to ambient oxygen with temperature. The phase development, densification, and microstructure were controlled by Cr rather than by Co but the electrical and grain boundary properties were controlled by Co rather than by Cr.

Crystal Structure and Physical Property of Tetragonal-like Epitaxial Bismuth Ferrites Film

  • Nam, Joong-Hee;Biegalski, Michael;Christen, Hans M.;Kim, Byung-Ik
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.7-8
    • /
    • 2011
  • Basically, the lattice mismatch between film and substrate can make those BiFeO3(BFO) films distorted with strain structure. BFO phase can be stabilized on LaAlO3(LAO) represents the example of a multiferroic with giant axial ratio. Its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion and related to the rotation of the oxygen octahedra. In this study, we show that phases with a tetragonal-like epitaxial BFO films can indeed be ferroelectric and also can be stabilized via epitaxial growth onto LAO. Recent reports on epitaxial BFO films show that the crystal structure changes from nearly rhombohedral ("R-like") to nearly tetragonal("T-like") at strains exceeding approximately -4.5%, with the "T-like" structure being characterized by a highly enhanced c/a ratio. While both the "R-like" and the "T-like" phases are monoclinic, our detailed x-ray diffraction results reveal asymmetry change from MA and MC type, respectively. By applying additional strain or by modifying the unit cell volume of the film by substituting Ba for Bi, the monoclinic distortion in the "T-like" MC phase is reduced, i.e. the system approaches a true tetragonal symmetry. There are two different M-H loops for $Bi_{1-x}Ba_xFeO_{3-{\delta}}$(BBFO) and BFO films on SrTiO3(STO) & LAO substrates. Along with the ferroelectric characterization, these magnetic data indicate that the BFO phase stabilized on LAO represents the first example of a multiferroic with giant axial ratio. However, there is a significant difference between this phase and other predicted ferroelectrics with a giant axial ratio: its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion. Therefore, in going from bulk to highly-strained films, a phase sequence of rhombohedral(R)-to-monoclinic ["R-like" MA-to-monoclinic, "T-like" MC-to-tetragonal (T)] is observed. This sequence is otherwise seen only near morphotropic phase boundaries in lead-based solid-solution perovskites (i.e. near a compositionally induced phase instability), where it can be controlled by electric field, temperature, or composition. Our results show that this evolution can occur in a lead-free, stoichiometric material and can be induced by stress alone. Those major results are summarized as follows ; 1) Ba-doping increases the unit cell volume, 2) BBFO on LAO can be fully strained up to x=0.08 as a strain limit (Fig. 1), 3) P(E) & M(H) properties can be tuned by the variation of composition, strain, and film thickness.

  • PDF

Synthesis and high Temperature properties of Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel prepared by oxalate precipitation (Oxalate 침전법의 의한 Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel의 합성 및 고온특성)

  • 김세호;이병우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2000
  • Synthesis and high temperature phase stability of $_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$(0$\leq$x$\leq$0.2,y=0,1/9,1/6) spinel, both the excess lithium and cobalt added, have been studied. The spinel was prepared by oxalate precipitation method as the wet chemical process. Oxalate derived spinel was synthesized by heating of precipitates at temperature lower than $600^{\circ}C$. As a result of the TG-DTA and XRD analysis of prepared and quenched powders, it was found that reversible phase transitions started at temperatures $T_1$, $T_2$$T_{2'}$. The transitions involved weight (oxygen) loss and gain during heating and cooling. The effects of Li excess and Co doping on the spinel lattice constant, phase stability and transition temperatures of the prepared powders are investigated. This study would provide important data for determining the spinel preparation process such as synthesis temperature and cooling speed.

  • PDF

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

Kinetics and Mechanism of the Oxidation of Sulfur Dioxide on Nickel Oxide-${\alpha}$-Ferric Oxide System (산화니켈-${\alpha}$ 형 산화철 상에서 이산화황의 산화 반응메카니즘)

  • Kyu Yong Lee;Yong Rok Kim;Sung Han Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.183-188
    • /
    • 1983
  • The catalytic oxidation of $SO_2$ has been investigated in the presence of vacuum-activated 10 mol % Ni-doped ${\alpha}-Fe_2O_3$ under various partial pressures of $SO_2\;and\;O_2$ at temperatures from 320 to $440{\circ}C$. Over the temperature range $320{\sim}440{\circ}C$, the activation energy is 13.8 $kcal{\cdot}mol^{-1}$. The oxidation rates have been correlated with 1.5 order kinetics; first order with respect to $SO_2$ and 0.5 order with respect to $O_2$. From the kinetic data and conductivity measurements, the adsorption, oxidation mechanism of $SO_2$ and the defect structure of vacuum-activated 10 mol % Ni-doped {\alpha}-Fe_2O_3$ are suggested. $O_2\;and\;SO_2$ appear to be adsorbed essentially as ionic species. Two surface sites, probably an $O^{2-}$ lattice and an oxygen vacancy which is induced by Ni-doping, might be required to adsorb $SO_2\;and\;O_2$. The conductivity measurements and kinetic data indicate that the adsorption process of $SO_2\;{(SO_2+O^{2-}}_{(latt)}{\rightleftharpoons}{{SO_3}^-}_{(ads)}+e')$ is the rate-determining step.

  • PDF

Ellipsometric study of Mn-doped $Bi_4Ti_3O_{12}$ thin films

  • Yoon, Jae-Jin;Ghong, Tae-Ho;Jung, Yong-Woo;Kim, Young-Dong;Seong, Tae-Geun;Kang, Lee-Seung;Nahm, Sahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.173-173
    • /
    • 2010
  • $Bi_4Ti_3O_{12}$ ($B_4T_3$) is a unique ferroelectric material that has a relatively high dielectric constant, high Curie temperature, high breakdown strength, and large spontaneous polarization. As a result this material has been widely studied for many applications, including nonvolatile ferroelectric random memories, microelectronic mechanical systems, and nonlinear-optical devices. Several reports have appeared on the use of Mn dopants to improve the electrical properties of $B_4T_3$ thin films. Mn ions have frequently been used for this purpose in thin films and multilayer capacitors in situations where intrinsic oxygen vacancies are the major defects. However, no systematic study of the optical properties of $B_4T_3$ films has appeared to date. Here, we report optical data for these films, determined by spectroscopic ellipsometry (SE). We also report the effects of thermal annealing and Mn doping on the optical properties. The SE data were analyzed using a multilayer model that is consistent with the original sample structure, specifically surface roughness/$B_4T_3$ film/Pt/Ti/$SiO_2$/c-Si). The data are well described by the Tauc-Lorentz dispersion function, which can therefore be used to model the optical properties of these materials. Parameters for reconstructing the dielectric functions of these films are also reported. The SE data show that thermal annealing crystallizes $B_4T_3$ films, as confirmed by the appearance of $B_4T_3$ peaks in X-ray diffraction patterns. The bandgap of $B_4T_3$ red-shifts with increasing Mn concentration. We interpret this as evidence of the existence deep levels generated by the Mn transition-metal d states. These results will be useful in a number of contexts, including more detailed studies of the optical properties of these materials for engineering high-speed devices.

  • PDF

Structure and Magnetic Properties of Ho and Ni Co-doped BiFeO3 Ceramics

  • Hwang, J.S.;Yoo, Y.J.;Park, J.S.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.183-183
    • /
    • 2014
  • Recently, multiferroic materials gain much attention due to their fascinating fundamental physical properties. These materials offer wide range of potential applications such as data storage, spintronic devices and sensors, where both electronic and magnetic polarizations can be coupled. Among single-phase multiferroic materials, $BiFeO_3$ is typical because of the room-temperature magnetoelectric coupling in view of long-range magnetic- and ferroelectric-ordering temperatures. However, $BiFeO_3$ is well known to have large leakage current and small spontaneous polarization due to the existence of oxygen vacancies and other defects. Furthermore the magnetic moment of pure $BiFeO_3$ is very weak owing to its antiferromagnetic nature. Recently, various attempts have been performed to improve the multiferroic properties of $BiFeO_3$ through the co-doping at the A and the B sites, by making use of the fact that the intrinsic polarization and magnetization are associated with the lone pair of $Bi^{3+}$ ions at the A sites and the partially-filled 3d orbitals of $Fe^{3+}$ ions at the B sites, respectively. In this study, $BiFeO_3$, $Bi_{0.9}Ho_{0.1}FeO_3$, $BiFe_{0.97}Ni_{0.03}O_3$ and $Bi_{0.9}Ho_{0.1}Fe_{0.97}Ni_{0.03}O_3$ bulk compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Ho_2O_3$, $Fe_2O_3$ and $NiO_2$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ for 24 h to produce the samples. The samples were immediately put into an oven, which was heated up to $800^{\circ}C$ and sintered in air for 1 h. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent and temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer and superconducting quantum-interference device.

  • PDF

Physical Characterization of GaAs/$\textrm{Al}_{x}\textrm{Ga}_{1-x}\textrm{As}$/GaAs Heterostructures by Deep Level transient Spectroscopy (DLTS 방법에 의한 GaAs/$\textrm{Al}_{x}\textrm{Ga}_{1-x}\textrm{As}$/GaAs 이종구조의 물성분석에 관한 연구)

  • Lee, Won-Seop;Choe, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.460-466
    • /
    • 1999
  • The deep level electron traps in AP-MOCVD GaAs/undoped Al\ulcornerGa\ulcornerAs/n-type GaAs heterostructures have been investigated by means of Deep Level Transient Spectroscopy DLTS). In terms of the experimental procedure, GaAs/undoped Al\ulcornerGa\ulcornerAs/n-type GaAs heterostructures were deposited on 2" undoped semi-insulating GaAs wafers by the AP-MOCVD method at $650^{\circ}C$ with TMGa, AsH3, TMAl, and SiH4 gases. The n-type GaAs conduction layers were doped with Si to the target concentration of about 2$\times$10\ulcornercm\ulcorner. The Al content was targeted to x=0.5 and the thicknesses of Al\ulcornerGa\ulcornerAs layers were targeted from 0 to 40 nm. In order to investigate the electrical characteristics, an array of Schottky diodes was built on the heterostructures by the lift-off process and Al thermal evaporation. Among the key results of this experiment, the deep level electron traps at 0.742~0.777 eV and 0.359~0.680 eV were observed in the heterostructures; however, only a 0.787 eV level was detected in n-type GaAs samples without the Al\ulcornerGa\ulcornerAs overlayer. It may be concluded that the 0.787 eV level is an EL2 level and that the 0.742~0.777 eV levels are related to EL2 and residual oxygen impurities which are usually found in MOCVD GaAs and Al\ulcornerGa\ulcornerAs materials grown at $630~660^{\circ}C$. The 0.359~0.680 eV levels may be due to the defects related with the al-O complex and residual Si impurities which are also usually known to exist in the MOCVD materials. Particularly, as the Si doping concentration in the n-type GaAs layer increased, the electron trap concentrations in the heterostructure materials and the magnitude of the C-V hysteresis in the Schottky diodes also increased, indicating that all are intimately related.ated.

  • PDF