• Title/Summary/Keyword: Oxygen distribution

Search Result 690, Processing Time 0.024 seconds

The Effect of Hybrid Reburning on NOx Reduction in Oxygen-Enriched LPG Flame (산소부화 LPG 화염에서 혼합형 재연소 방법에 의한 NOx 저감 효과)

  • Lee, Chang-Yeop;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.14-21
    • /
    • 2007
  • In order to enhance combustion efficiency, oxygen-enriched combustion is used by increasing the oxygen ratio in the oxidizer. However, since the flame temperature increases, NOx formation in the furnace seriously increases for low oxygen enrichment ratio. In this case, reburning is a useful technology for reducing nitric oxide. In this research, experimental studies have been conducted to evaluate the hybrid effects of reburning/selective non-catalytic reaction (SNCR) and reburning/air staging on NOx formation and also to examine heat transfer characteristics in various oxygen-enriched LPG flames. Experiments were performed in flames stabilized by a co-flow swirl burner, which were mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and NOx generation were observed to increase by low level oxygen-enriched combustion, but due to its hybrid effects of reburning, SNCR and Air staging, NOx concentration in the exhaust have decreased considerably.

  • PDF

An Experimental and Numerical Study on the Oxy-MILD Combustion at Pilot Scale Heating Capacity (Pilot급 산소 MILD 연소에 관한 실험 및 수치해석적 연구)

  • Cha, Chun-Loon;Lee, Ho-Yeon;Hwang, Sang-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.275-282
    • /
    • 2016
  • MILD (Moderate and Intense Low-oxygen Dilution) combustion using oxygen as an oxidizer is considered as one of the most promising combustion technologies for high energy efficiency and for reducing nitrogen oxide and carbon dioxide emissions. In order to investigate the effects of nozzle angle and oxygen velocity conditions on the formation of oxygen-MILD combustion, numerical and experimental approaches were performed in this study. The numerical results showed that the recirculation ratio ($K_V$), which is an important parameter for performing MILD combustion, was increased in the main reaction zone when the nozzle angle was changed from 0 degrees to 15 degrees. Also, it was observed that a low and uniform temperature distribution was achieved at an oxygen velocity of 400 m/s. The perfectly invisible oxy-MILD flame was observed experimentally under the condition of a nozzle angle of $10^{\circ}$ and an oxygen velocity of 400 m/s. Moreover, the NOx emission limit was satisfied with NOx regulation of less than 80 ppm.

A study on the determination of a representative location for monitoring the dissolved oxygen concentration in a aeration tank of sewage treatment plant (하수처리장 폭기조의 용존산소농도 모니터링 대표지점 선정에 관한 연구)

  • Bang, Seok-Yong;Bum, Bong-Su;Kim, Jin-Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.389-394
    • /
    • 2019
  • In order to determine the location of average concentration and distribution status of dissolved oxygen in the rectangular aeration tank of the sewage treatment plant was analyzed and the difference of dissolved oxygen concentration was remarkable at each location. Compared with the computational fluid dynamics analysis, it was found that the results were consistent with the measurement results by showing the difference of dissolved oxygen concentration between the locations. Based on the measured data, the representative location of dissolved oxygen in aeration tank was selected by using statistical analysis method and the representative location was expressed in three-dimensional coordinates(LWH : 25%, 50%, 33%) from flow direction and left wall. Also the difference between the dissolved oxygen concentration at the actual measurement location and the average concentration value of the entire aeration tank was founded, and the equations for calibrating the automatic measurement data considering the actual measurement location were calculated.

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

Spatial distribution of Acartia(Copepoda, Calanoida) species in the southern coastal waters of Korea during summer (하계 남해연안에 출현하는 Acartia속 요각류의 공간 분포)

  • Choi, Seo Yeol;Seo, Min Ho;Shin, Kyoungsoon;Jang, Min-Chul;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.299-308
    • /
    • 2019
  • The occurrence patterns of Acartia(Copepoda; Calanoida) species, A. erythraea, A. hongi, A. hudsonica, A. ohtsukai, and A. sinjiensis, were examined in the southern coastal waters of Korea in the summer in August 2012. The Acartia species had different spatial distribution according to environmental factors. A. erythraea showed higher density in a semi-closed bay (Gamak, Masan) where the dissolved oxygen was low (<2 mg L-1). A. sinjiensis showed a high density in a semi-closed bay when the chlorophyll-a concentration was >2 ㎍ L-1. A. ohtsukai showed a high density at water temperatures >26℃ and low salinity <30. A. hongi and A. hudsonica showed at water temperatures <27℃ and high dissolved oxygen (>5 mg L-1). These results suggest that environmental factors (temperature, salinity, dissolved oxygen, and chlorophyll-a concentration) may affect the spatial distribution of Acartia species dominant in the southern coasts of Korea in summer.

Bubble size characteristics in the wake of ventilated hydrofoils with two aeration configurations

  • Karn, Ashish;Ellis, Christopher R;Milliren, Christopher;Hong, Jiarong;Scott, David;Arndt, Roger EA;Gulliver, John S
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • Aerating hydroturbines have recently been proposed as an effective way to mitigate the problem of low dissolved oxygen in the discharge of hydroelectric power plants. The design of such a hydroturbine requires a precise understanding of the dependence of the generated bubble size distribution upon the operating conditions (viz. liquid velocity, air ventilation rate, hydrofoil configuration, etc.) and the consequent rise in dissolved oxygen in the downstream water. The purpose of the current research is to investigate the effect of location of air injection on the resulting bubble size distribution, thus leading to a quantitative analysis of aeration statistics and capabilities for two turbine blade hydrofoil designs. The two blade designs differed in their location of air injection. Extensive sets of experiments were conducted by varying the liquid velocity, aeration rate and the hydrofoil angle of attack, to characterize the resulting bubble size distribution. Using a shadow imaging technique to capture the bubble images in the wake and an in-house developed image analysis algorithm, it was found that the hydrofoil with leading edge ventilation produced smaller size bubbles as compared to the hydrofoil being ventilated at the trailing edge.

On the two phase detonation in carbon laden oxygen : taking into account of inner particle temperature distribution (입자온도 분포를 고려한 탄소입자와 산소에서의 이상폭발현상에 관한 연구)

  • 승성표;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1104-1112
    • /
    • 1988
  • In this study the structure of a two phase detonation has been numerically investigated through the assumption of a steady and one-dimensional flow in the suspension of carbon particles and pure oxygen. The bow shock formation in front of carbon particles has been taken into consideration when the relative velocity of gas flow with respect to the particle exceeds the local speed of sound. But its effect was found to be very limited to the induction zone only. Furthermore the interior particle temperature distribution has been considered in this work. It was found that the inner temperature gradient was very steep in the region of high relative velocity. On the while the temperature distribution inside the particle was almost uniform in the region of low relative velocity. Overall, the effect of the interior particle temperature distribution has been significant in the two phase detonation.

Isolation and Identification of Oxygen Resistant Bifidobacterium sp. from Korean and its Characteristics (한국인의 분변으로부터 내산소성 균주의 분리, 동정 및 분리 균주의 특성)

  • 안준배;이계호;박종현
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.122-126
    • /
    • 1997
  • Bifidobacteria have been known as beneficial inhabitant of human intestine. Therefore, bifidobacteria began to be noticed as a starter in the manufacture of fermented dairy products. Perhaps the key for effective use of bifidobacteria in commercial dairy products is the maintenance of viability of bifidobacteria during large scale preparation of starter culture and distribution of products. So we tried to obtain the bifidobacteria having suitable characteristics for using as a starter in the manufacture of fermented dairy products. Among bifidobacteria isolated from Korean, E-4 strain showed the highest resistance to oxygen. To know whether the selected strain will be fit for manufacture of fermented dairy products, we also investigated resistance of the selected strain to HCI. The selected strain, E-4, was more resistant to environmental stresses such as oxygen, H2O2 and HCI than Bifidobacterium longum known as resistant strain to environmental stresses. According to carbohydrate fermentation patterns and morphological characteristics, E-4 strain was identified as B. bifidum. In conclusion, the selected strain, E-4, was thought to be fit for manufacture of fermented dairy products.

  • PDF

The effect of fuel/oxygen jet impingement on MILD combustion (연료/산소 Jet Impingement에 의한 MILD 연소)

  • Lee, Ho Yeon;Cha, Chun Loon;Lee, Pil Hyong;Hwang, Sang Soon;Lee, Sung Ho;Yoo, In
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.309-311
    • /
    • 2015
  • The MILD(Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for high thermal efficiency and low emissions. In this paper, the effect of fuel oxygen impingement on formation of MILD combustion was analyzed using numerical simulation. This investigation was simulated under the thermal intensity $0.04MW/m^3$ and equivalence ratio 0.91. The results show that the temperature distribution was become relatively uniform and the amount of CO emission was decreased as the increase of oxygen jet velocity and impinging angle.

  • PDF