• Title/Summary/Keyword: Oxygen ambient gas

Search Result 87, Processing Time 0.047 seconds

Characteristics of Entrainment Flow Rate in a Coanda Nozzle with or without Coaxial Contractor (코안다 노즐에서 중심 축소관 유무에 따른 유입량 특성)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.21-27
    • /
    • 2014
  • A MILD(Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used a coanda nozzle for the exhaust gas recirculation in a MILD combustor. A numerical analysis was accomplished to elucidate the effect of exhaust gas entrainment toward the furnace with or without a coaxial contractor. The result of the present CFD analysis showed that the entrainment mass flow rate without a coaxial contractor had 18% larger than that with a coaxial contractor when the mixed gas outlet pressure was ambient pressure. On the other hand, if the outlet pressure increased, the mass flow rate with a contractor was larger than that without a contractor. It could be analysed by the entrainment driving force composed with the nozzle throat pressure, inlet and outlet pressures and flow cross sectional area.

Electrical and optical properties of Li & P co-doped ZnO thin film by PLD

  • Choi, Im-Sic;Kim, Don-Hyeong;Heo, Young-Woo;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.209-209
    • /
    • 2009
  • Fabrication of p-type ZnO has already proven difficult and usually inconsistent despite numerous worldwide efforts. Many research groups studied electrical and optical properties P, Li, As, N single doped ZnO thin film. In P-doped ZnO thin film, the reproducibility of p-type conduction with $P_2O_5$ as a dopant source was shown to be relatively poor. In this study, we made P single doped and Li & P co-doped ZnO target. To investigate electrical and optical properties of P single doped and Li & P co-doped ZnO thin film using $P_2O_5$ and $Li_3PO_4$ dopant source respectively was deposited by PLD. The growth temperature was changed 500, $700^{\circ}C$ and various oxygen partial pressure and post-annealing conditions was changed temperature, different gas ambient($O_2,N_2$). We investigate that how to change electrical and optical properties as function of growth temperature, oxygen partial pressure and post-annealing(RTA).

  • PDF

Hydrogen Gas Sensing Properties in Air on PdO Thin Films

  • Kim, Yeon-Ju;Lee, Young-Taek;Lee, Jun-Min;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.91-91
    • /
    • 2009
  • In the past decade, Pd based thin films have been studied far hydrogen gas sensors due to their high possibility for energy industry and environmental applications. In this work, we report a navel method to fabricate highly sensitive hydrogen gas sensors based on PdO thin films. The films were deposited on Si substrates in Ar and $O_2$ ambient using reactive sputtering system. A semiconductor process has been utilized to fabricate PdO films with t=40nm. We observed the resistance changes of the PdO films with various $H_2$ concentrations. It was found that the electrical properties of the thin films depend on the composition of oxygen. The sensitivity is defined as $S\;=\;(R_0-R)/R{\times}100%$, where R and $R_0$ are the resistances in the presence of exposing the hydrogen gas and air, respectively. The sensitivity of the thin films was found to be as high as about 95%. After exposing to hydrogen gas, we discovered that the nano-sized cracks formed on the surface of the PdO thin films. The nano-cracks formed in deoxidized PdO thin films were known by playing a key role to reduce more than 4 times the response time of absorption. Our results illustrate that the deoxidized PdO thin films can be used as hydrogen sensors.

  • PDF

Study on Instantaneous Structure of Turbulent Pulverized Coal Flame by Simultaneous Measurement (동시계측에 의한 난류 미분탄 화염의 순간구조에 관한 연구)

  • Hwang, Seung-min
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.309-317
    • /
    • 2018
  • In this study, a laser sheet technique and PLIF (Planar laser-induced fluorescence) are applied to a laboratory-scale pulverized coal burner of the open type, and the spatial relationship of the pulverized coal particle zone and the combustion reaction zone is examined by simultaneous measurement of Mie scattering and OH-LIF images. It is found that this technique can be used to investigate the spatial relationship of the combustion reaction zone and pulverized-coal particles in turbulent pulverized-coal flames without disturbing the combustion reaction field. In the upstream region, the combustion reaction occurs only in the periphery of the clusters where high-temperature burned gas of the methane pilot flame is entrained and oxygen supply is sufficient. In the downstream region, however, combustion reaction can be seen also within clusters of pulverized-coal particles, since the temperature of pulverized-coal particles rises, and the mixing with emitted volatile matter and ambient air is promoted.

Thermal cyclic characteristics of TBC/CoNiCrAlY thermal barrier coatings (TBC/CoNiCrAlY 용사코팅의 열싸이클 특성)

  • Kim Ui-Hyeon;Yu Geun-Bong
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.45-47
    • /
    • 2006
  • The rotating components in the hot sections of land-based gas turbine are exposed to severe environments during several tens thousand operation hours at above $1100^{\circ}C$ operation temperature. To protect such components from high temperature oxidation, an intermediate bond coat is applied, typical of a MCrAlY-type metal alloy. This study is concerned with the thermal cyclic behavior of thermal barrier coatings. The MCrAlY bond coatings are deposited by HVOF (High Velocity Oxygen Fuel) method on a nickel-based superalloy (GTD-111). Thermal cyclic tests at $1100^{\circ}C$ in ambient air for various periods of time were used to evaluate the thermal cyclic resistance of the TBC coating. The microstructure and morphology of as-sprayed and of thermal cycled coatings were characterized by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD).

  • PDF

Annealing effect of Si nanocrystallites thin films (실리콘 나노결정 박막의 후열처리 효과 연구)

  • Jeon, Kyung-Ah;Kim, Jong-Hoon;Choi, Jin-Baek;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.88-91
    • /
    • 2003
  • Si nanocrystallites thin films have been fabricated by pulsed laser deposition using a Nd:YAG laser. After deposition, samples were annealed at the temperature range of 400 to $800^{\circ}C$. Hydrogen passivation was then performed in the forming gas ($95%N_{2}+5%H_{2}$) at $500^{\circ}C$. Strong violet-indigo photoluminescence has been observed at room temperature on nitrogen ambient-annealed Si nanocrystallites. As a result of photoluminescence spectra and infrared absorption spectra, we conclude that the violet-indigo PL efficiency is related with oxygen vacancy in the $SiO_x$(x= 1.6-1.8) matrix.

  • PDF

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.

A Study of Hydrocarbon Reduction with Photocatalysts (광촉매를 이용한 탄화수소 저감 연구)

  • 손건석;고성혁;김대중;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.47-53
    • /
    • 2000
  • To overcome the shortage of conventional TWC that is activated at high temperature, higher than 25$0^{\circ}C$, photocatalyst is considered as an new technology. Because the photocatalytic reaction of photocatalyst is not a thermo mechanical reaction, it is necessary to heat the system to start the reaction. It can be activated just by ultra violet light that includes wavelengths shorter than 400 nanometers even at ambient temperature. In this study photocatalytic reduction of hydrocarbon was investigated with a model gas test. To understand the effects of co-existence gases on the hydrocarbon reduction by photoreaction, CO and NO, $O_2, H_2O$ gases those are components of exhaust gases of gasoline engine are supplied with C3H8/N2 to a photoreactor. The photoreactor contains $TiO_2$ photocatalyst powders and a UV bulb. The results show that oxygen is the most important factor to reduce HC emission with photocatalyst. Photocatalyst seems to have a good probability for automotive application to reduce cold start HC emissions.

  • PDF

Structural and Electrical Characteristics of IZO Thin Films Deposited at Different Hydrogen Flow Rate (수소 유량에 따른 IZO 박막의 구조적 및 전기적 특성)

  • Hong, Kyoung-Lim;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.7-11
    • /
    • 2019
  • We have investigated the effect of the hydrogen flow rate on the characteristics of IZO thin films for the TCO (transparent conducting oxide). For this purpose, IZO thin films are deposited by RF magnetron sputtering at 300℃ with various H2 flow rate. To investigate the influences of the ambient gases, the flow rate of hydrogen in argon was varied from 0.1 sccm to 1 sccm. The IZO thin films deposited at 300℃ show crystalline structure having an (222) preferential orientation. The electrical resistivity of the crystalline-IZO films deposited at 300℃ and hydrogen gas of 0.8sccm was 3.192×10-4Ω cm, the lowest value. As the hydrogen gas flow rate increased, the resistivity tended to decrease. The XPS profiles showed that the number of oxygen vacancy decreased as the hydrogen flow rate increased. The transmittance of the IZO films deposited at 300℃ were showed more than 80%.

A Study on the Electrical Properties of Pt Thin film RTD for Temperature Sensor (온도센서용 Pt박막 측온저항체의 전기적 특성에 관한 연구)

  • 문중선;정광진;최성호;조동율;천희곤
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • Pt thin film of about 7000$\AA$ thickness was deposited on the alumina substrate using DC Magnetron Sputter and the characteristics of the film for temperature sensor were investigated. When film of about 7000$\AA$ thickness was deposited at working gas pressure of $2.0{\times}10^{-3}$torr, sputtering power of 50W, substrate temperature of $350^{\circ}C$(Ts), sheet resistance(Rs), resistivity($\rho$) and temperature coefficient of resistivity(TCR) of the film were respectively 0.39$\Omega$/$\square$, 27.60$\mu\Omega$-cm and $3350 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min in hydrogen ambient, Rs, $\rho$ and TCR were respectively 0.236$\Omega$/$\square$, 15.18$\mu\Omega$-cm and 3716 ppm/$3716 ppm/^{\circ}C$. When working gas of 15sccm oxygen and 100sccm Argon were used, Rs, $\rho$ and TCR were respectively 0.335$\Omega$/$\square$, 22.45$\mu\Omega$-cm and $3427 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min, Rs, $\rho$and TCR were respectively 0.224/$\Omega$$\square$, 14$\mu\Omega$-cm and $3760 ppm/^{\circ}C$ and the characteristics of the film were much improved.

  • PDF