• 제목/요약/키워드: Oxygen Plasma treatment

검색결과 332건 처리시간 0.026초

Optimized O2 Plasma Surface Treatment for Uniform Sphere Lithography on Hydrophobic Photoresist Surfaces

  • Yebin Ahn;Jongchul Lee;Hanseok Kwon;Jungbin Hong;Han-Don Um
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.188-194
    • /
    • 2024
  • This paper introduces an optimized oxygen (O2) plasma surface treatment technique to enhance sphere lithography on hydrophobic photoresist surfaces. The focus is on semiconductor manufacturing, particularly the creation of finer structures beyond the capabilities of traditional photolithography. The key breakthrough is a method that makes substrate surfaces hydrophilic without altering photoresist patterns. This is achieved by meticulously controlling the O2 plasma treatment duration. The result is the consistent formation of nano and microscale patterns across large areas. From an academic perspective, the study deepens our understanding of surface treatments in pattern formation. Industrially, it heralds significant progress in semiconductor and precision manufacturing sectors, promising enhanced capabilities and efficiency.

고분자 전해질막으로 제조한 슈퍼커패시터의 전기화학적 특성에 대한 산소 플라즈마 처리 영향 (Effect of O2 Plasma Treatment on Electrochemical Performance of Supercapacitors Fabricated with Polymer Electrolyte Membrane)

  • 문승재;김영준;강두루;이소연;김종학
    • 멤브레인
    • /
    • 제32권1호
    • /
    • pp.43-49
    • /
    • 2022
  • 높은 안전성과 견고한 기계적 특성을 가진 고체상 슈퍼커패시터는 차세대 에너지 저장 장치로서 세계적 관심을 끌고 있다. 슈퍼커패시터의 전극으로서 경제적인 탄소 기반 전극이 많이 사용되는데 수계 전해질을 도입하는 경우 소수성 표면을 가진 탄소 기반 전극과의 계면 상호성이 좋지 않아 저항이 증가한다. 이와 관련하여 본 연구에서는 전극 표면에 산소 플라즈마 처리를 하여 친수화된 전극과 수계 전해질 사이의 향상된 계면 성질을 기반으로 더 높은 전기화학적 성능을 얻는 방법을 제시한다. 풍부해진 산소 작용기들로 인한 표면 친수화 효과는 접촉각 측정을 통해 확인하였으며, 전력과 지속시간을 조절함으로써 친수화 정도를 손쉽게 조절할 수 있음을 확인하였다. 수계 전해질로 PVA/H3PO4 고체상 고분자 전해질막을 사용하였으며 프레싱하여 전극에 도입하였다. 15 W의 낮은 전력으로 5초간 산소 플라즈마 처리를 시행하는 것이 최적 조건이었으며 슈퍼커패시터의 에너지 밀도가 약 8% 증가하였다.

플라즈마 조건 변화에 따른 ITO 특성 분석 및 유기발광소자의 제작에 관한 연구 (A Study on the Characteristic Analysis of ITO and the Fabrication of Organic Light Emitting Diodes by Variation of Plasma Condition)

  • 김중연;강성종;조재영;김태구;오환술
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.941-944
    • /
    • 2005
  • In this experiment, OLEDs(Organic Light Emitting Diodes) was fabricated to confirm effect of Plasma treatment which increase the hole injection characteristic from anode. Device structure was $ITO/2-TNATA/{\alpha}-NPD/DPVBi/BAlq/Alq_3/Al:Li$. We used DPVBi (4, 4 - Bis (2,2-diphenylethen-1-yls) - Biphenyl) as a blue emitting material. To optimize the process condition of plasma treatment, we used 2 gases of the oxygen and nitrogen gas under 120 mTorr with 100 W, 200 W, and 400 W plasma power. The current efficiency of $N_2$ plasma is more efficient than that of $O_2$ plasma. At $1000 cd/m^2$, we obtained the maximum current efficiency of 6.45 cd/A using $N_2$ gas with 200 W plasma power.

저밀도 폴리에틸렌의 친수성 표면개질에 미치는 플라즈마의 영향 (The Effect of Plasma on Hydrophilic Surface Modification of LDPE)

  • 황승노;전법주;정일현
    • 공업화학
    • /
    • 제9권3호
    • /
    • pp.383-387
    • /
    • 1998
  • 플라즈마 기체 종류($O_2$, $N_2$, and $O_2/N_2$)에 따른 저밀도 폴리에틸렌의 친수성 표면개질에 미치는 영향이 표면에 생성된 기능성 그룹과 물의 접촉각과의 관계로부터 조사되었다. XPS와 FT-IR ATR 분석을 통하여 플라즈마 처리된 LDPE 표면은 카보닐, 카복실 등의 산소 기능기들이 생성되었고, 질소 플라즈마 처리와 산소와 질소 혼합 기체 플라즈마 처리에 의해 표면에 질소 기능기가 생성됨이 확인되었다. rf-출력과 처리시간에 대한 접촉각 변화에서 질소 플라즈마 처리가 가장 작은 값을 나타내었고, 플라즈마 기체 종류에 관계없이 복합매개 변수 [(W/FM)t]가 520~550GJs/kg 부근에서 가장 효과적인 친수성 개질 반응이 이루어지는 최적조건임을 알 수 있었다.

  • PDF

유도결합플라즈마 표면 처리 및 SnO2 증착에 따른 폴리카보네이트 특성 연구 (Influence of Inductive Coupled Plasma Treatment and SnO2 Deposition on the Properties of Polycarbonate)

  • 엄태영;최동혁;손동일;엄태용;김대일
    • 한국전기전자재료학회논문지
    • /
    • 제31권3호
    • /
    • pp.156-159
    • /
    • 2018
  • Inductively coupled plasma (ICP) treatment with argon and a mixture of argon and oxygen gases has been used to modify the surface of polycarbonate (PC) substrates. The results showed that the surface contact angle was inversely proportional to the plasma discharge power and that the mixed-gas plasma (gas flow 10:10 sccm, discharge power 60 W) decreased the surface contact angle as low as $18.3^{\circ}$, indicating a large increase in the surface hydrophilicity. In addition, $SnO_2$ thin films deposited on the PC substrate effectively enhanced the ICP plasma treatment, and could also enhance the usefulness of PC in the inner parts of automobiles.

게이트 절연막의 $O_2$플라즈마 처리에 의한 펜타센 OTFT의 성능 개선 (Performance Enhancement due to Oxygen Plasma Treatment on the Gate Dielectrics of OTFTs)

  • 이명원;김광현;허영헌;안정근
    • 대한전자공학회논문지SD
    • /
    • 제40권7호
    • /
    • pp.494-498
    • /
    • 2003
  • 펜타센 유기박막트랜지스터(OTFT)에서 게이트 절연막의 표면상태가 소자의 성능에 큰 영향을 미친다. 본 논문에서는 펜타센을 진공 증착하기전 게이트 절연막의 표면에 O₂플라즈마 처리를 함으로써 OTFT의 성능에 미치는 영향을 분석하였다. O₂플라즈마 처리 후 소자의 전계 이동도가 0.05㎠/V·sec로 나타났으며, 이는 처리전 보다 약 10배정도 향상된 것이다. 또한 O₂플라즈마 처리는 게이트 절연막의 표면상태를 균일하게 하여 각 성능지수들의 표준편차가 감소하였다. 그리고 전계 이동도는 O₂플라즈마에 노출되는 시간에 따라 증가하였는데 5분을 기점으로 다시 감소하였다. 따라서 O₂플라즈마 처리시간은 5분이 최적인 것으로 판단된다.

방염용 실리카의 고정화를 위한 아마인유의 저온플라즈마처리 (Low Temperature Plasma Treatment of Linseed Oil for Immobilization of Silica as Flame-resistant Material)

  • 서은덕
    • 한국염색가공학회지
    • /
    • 제24권4호
    • /
    • pp.313-320
    • /
    • 2012
  • For the preparation of hardened films which can be applied as a binder for flame-resistant materials such as silica, linseed oil was subjected to a low temperature plasma treatment with argon, or oxygen gas. The film was produced much faster than so-called drying of oil in air. The SEM analysis for silica particles embedded in the hardened film after plasma treatment showed that the silica particles were immobilized on substrate and were evenly dispersed. The FT-IR spectral analysis for the plasma-treated linseed oil films demonstrated that the radicals which were formed during the plasma treatments caused the linseed oil to be cross-linked, and the plasmas attacked carbon chains of the oil randomly without focusing on specific vulnerable bonds such carbon double and carbonyl bonds intensively unless exposure times of the plasmas were prolonged too much, while the cross-linking of the air-dried film was considered to occur at the well-known typical sites, i.e., carbon-carbon double bond and ${\alpha}$-methylene carbon. Burning times, as a measure of flame/fire resistance, of silica-filled cellulose substrates, increased with increasing contents of silica.

Effect of O2 Plasma Treatments of Carbon Supports on Pt-Ru Electrocatalysts

  • Park, Soo-Jin;Park, Jeong-Min;Seo, Min-Kang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.331-334
    • /
    • 2010
  • In the present study, carbon supports mixed with purified multi-walled carbon nanotubes (MWNTs) and carbon blacks (CBs) were used to improve the cell performance of direct methanol fuel cells (DMFCs). Additionally, the effect of $O_2$ plasma treatment on CBs/MWNTs supports was investigated for different plasma RF powers of 100, 200, and 300 W. The surface and structural properties of the CBs/MWNTs supports were characterized by FT-IR, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrocatalytic activity of PtRu/CBs/MWNTs catalysts was investigated by cyclic voltammetry measurement. In the experimental results, the oxygen functional groups of the supports were increased with increasing plasma RF power, while the average Pt particle size was decreased owing to the improvement of dispersibility of the catalysts. The electrochemical activity of the catalysts for methanol oxidation was gradually improved by the larger available active surface area, itself due to the introduction of oxygen functional groups. Consequently, it was found that $O_2$ plasma treatments could influence the surface properties of the carbon supports, resulting in enhanced electrocatalytic activity of the catalysts for DMFCs.

Surface modification for block copolymer nanolithographyon gold surface

  • 황인찬;방성환;이병주;이한보람;김형준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Block copolymer lithography has attracted great attention for emerging nanolithography since nanoscaleperiodic patterns can be easily obtained through self-assembly process without conventional top-down patterning process. Since the morphologies of self-assembled block copolymer patterns are strongly dependent on surface energy of a substrate, suitable surface modification is required. Until now, the surface modification has been studied by using random copolymer or self-assembled mono layers (SAMs). However, the research on surface modifications has been limited within several substrates such as Si-based materials. In present study, we investigated the formation of block copolymer on Au substrate by $O_2$ plasma treatment with the SAM of 3-(p-methoxy-phenyl)propyltrichloro-silane [MPTS, $CH_3OPh(CH_2)_3SiCl_3$]. After $O_2$ plasma treatment, the chemical bonding states of the surface were analyzed by X-ray photoelectron spectroscopy (XPS). The static contact angle measurement was performed to study the effects of $O_2$ plasma treatment on the formation of MPTS monolayer. The block copolymer nanotemplates formed on Au surface were analyzed by scanning electron microscopy. The results showed that the ordering of self-assembled block copolymer pattern and the formation of cylindrical nano hole arrays were enhanced dramatically by oxygen plasma treatment. Thus, the oxidation of gold surface by $O_2$ plasma treatment enables the MPTS to form the monolayer assembly leading to surface neutralization of gold substrates.

  • PDF

저온 plasma 기술에 의한 PET 극세사직물의 날염성 개선(I) (Improvement of Printing Properties of PET Micro Filament Fabrics Using Low Temperature Plasma Technology(I))

  • 조규민;이종훈
    • 한국염색가공학회지
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 1995
  • In order to improve dyeability of poly(ethylene terephthalate)(PET) micro filament fabrics, the effect of the prior oxygen low temperature plasma on the subsequent dyeing(deep dyeing, printing) was examined in various conditions. The apparent concentration of dyed PET micro filament fabrics was increased by $O_{2}$plasma treatment. Higher discharge power levels and higher reactor pressure values created more significant effect. The wettability was significantly increased by $O_{2}$ plasma treatment. Therefore, it is predicted that introducing hydrophilic group on the surface of material can improve the apparent concentration of PET micro filament fabrics.

  • PDF