• Title/Summary/Keyword: Oxidizer Stream

Search Result 28, Processing Time 0.021 seconds

Experimental Investigations of the Characteristics of the Length Variation of Kerosene-Oxygen Laminar Diffusion Flames (등유-산소 층류 확산화염의 길이 변화 특성에 관한 실험적 연구)

  • Lee, Soo-Han;Lee, Jong won;Park, Seul Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.22-27
    • /
    • 2018
  • The flame length in coaxial diffusion flame configurations was investigated when the kerosene fuel flow rate, temperature of the oxidizer stream, and inert gas concentrations in the oxidizer stream were varied. The diffusion flame was photographed using a Schlieren camera under each of the experimental conditions and the obtained images were then digitized to measure the flame length. The measured flame lengths were proportional to the kerosene fuel flow rate and increased with increasing temperature of the oxidizer stream. In addition, increases in the inert gas concentration in the oxidizer stream resulted in stretching of the flame. In particular, the flame was further elongated in the oxidizer steam diluted with helium gas. Inert substitutions in the oxidizer stream that can adjust the viscous drag are believed to be one of the important mechanisms that affect the length of the coaxial diffusion flames.

A Numerical Study on Chemical Effects of Co2 Addition to Oxidizer and Fuel Streams in H2-O2 Counterflow Diffusion Flames (수소-산소 대향류 확산 화염에서 산화제와 연료측에 첨가된 Co2의 화학적 효과에 관한 수치해석 연구)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.371-381
    • /
    • 2004
  • Numerical simulation of $CO_2$ addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H$_2$-O$_2$ diffusion flames of a counterflow configuration. An artificial species, which displaces added $CO_2$ in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added $CO_2$, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added $CO_2$ causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of $CO_2$ addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, $CO_2$+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added $CO_2$ mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position.

A Study on Flame Extinction in Oxymethane Combustion (메탄 산소 연소에 있어서 화염 소화에 대한 연구)

  • Kim, Tae Hyung;Kwon, Oh Boong;Park, Jeong;Keel, Sang-In;Yun, Jin-Han;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.34-41
    • /
    • 2015
  • Oxy-methane nonpremixed flames diluted with $CO_2$ were investigated to clarify impact of radiation heat loss and chemical effects of additional $CO_2$ to oxidizer stream on flame extinction. Flame stability maps were presented with functional dependencies of critical diluents mole fraction upon global strain rate at several oxidizer stream temperatures in $CH_4-O_2/N_2$, $CH_4-O_2/CO_2$, and $CH_4-O_2/CO_2/N_2$ counterflow flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in nonpremixed $CH_4-O_2/N_2$ diffusion flame, whereas those are significant at low strain rate and are negligible at high strain rate (> $200s^{-1}$) in $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ counterflow flames. Chemical effects of additional $CO_2$ to oxidizer stream on the flame extinction curves were appreciable in both $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of nonpremixed oxy-methane flames permitting air infiltration when the baseline flame was taken to nonpremixed $CH_4-O_2/N_2$ flame.

The Characteristics of Soot at the Post-Flame Region in Jet Diffusion Flames Added Carbon Dioxide (이산화탄소가 첨가된 제트확산화염 후류에서의 매연 특성)

  • Ji, Jung-Hoon;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.9-13
    • /
    • 2010
  • An experimental study for characteristics of soot were conducted at the post-flame region in jet diffusion flames, where carbon dioxide was used as additives in oxidizer stream. Light-extinction method was performed using He-Ne laser with wave length at 632.8nm for the measurement of relative soot density and soot volume fraction with dimensionless extinction coefficient, $K_e$ and mass specific extinction coefficient, ${\sigma}_s$. To increase of resolution, laser light was modified for sheet-form using concave, convex lenses and slit. C/H ratio was introduced for quantitative analysis of soot growth which is expressed by carbonization and dehydrogen. Also transmission electron microscopy(TEM) was used for observation of morphological shape. The results show that the relative soot density in the post-flame region was lower when carbon dioxide was added in oxidizer stream because of reduction of flame temperature.

The Effects of Velocity and Concentration in the Oxidizer of Heptane Pool Fires on the Flame Stability (헵탄 풀화재 화염안정성에 관한 산화제 유속 및 농도 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • Flame flickering occurs mainly because of the buoyancy force for pool fires under ambient air. The cup-burner flame was used for experimental investigation of the effect of the oxidizer velocity on the gravitational instability. The results showed that the flickering frequency decreased with increasing oxidizer velocity. The frequency-buoyancy relation with nondimensional variables coincided with that of the buoyant flume and pool fires when the characteristic velocity was defined as the difference between the fuel and oxidizer velocities, which implies that the origin of the gravitational instability is the Kelvin-Helmholtz instability in the shear layer. The effect of the oxidizer composition on the instability was also examined through nitrogen dilution in the oxidizer stream. As the concentration of inert gas increased, the length of the blue flame increased and lift-off behavior was observed. The oscillation frequency was independent of the dilution ratio, but was related to the local flame structure.

Numerical Study on the Isothermal Flow Field abound Rectangular Cross Section Bluff Body (사각형 둔각물체 주위의 유동장 특성에 관한 수치적 연구)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.35-41
    • /
    • 2012
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to complement the previous experimental results of the bluff body stabilized flames [1]. For both fuel ejection configurations against an oxidizer stream, the flame stability was affected mainly by vortex structure and mixing field near bluff body. FDS(Fire Dynamic Simulator) based on the LES(Large Eddy Simulation) was employed to clarify the isothermal mixing characteristic and wake flow pattern around bluff body. The air used atmosphere and the fuel used methane. The result of counter flow configuration shows that the flow field depends on air velocity but the mixing field is influenced on the fuel velocity. At low fuel velocity the fuel mole fraction is below the flammable limit and hence the mixing is insufficient to react. Therefore, as the result, the flame formed at low fuel velocity is characterized by non-premixed flames. For the flow field of co-flow configuration, flame stability was affected by fuel velocity as well as air velocity. the vortex generated by fuel stream has counter rotating direction against the air stream. Therefore, the momentum ratio between air and fuel stream was important to decide the flame blow out limit, which is result in the characteristic of the partially premixed reacting wake near extinction.

The increase in the regression rate of hybrid rocket fuel by swirl flow and helical grain configuration (스월 유동과 나선형 그레인에 의한 하이브리드 로켓 연료의 연소율 향상)

  • Hwang, Yeong-Chun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.63-69
    • /
    • 2006
  • Experimental tests have been done with swirl injector and helical grain configuration to increase the regression rate of hybrid rocket solid fuel. Two types of injector were designed to evaluate the swirl effect of oxidizer stream on the increase in the regression rate. Results showed Type II injector with swirl number of 3.61 induced the better regression rate than Type I injector. Meanwhile, fuels with two different pitch number of 6 and 100 were used to analyzes the flow characteristics on the enhancement of regression rate. Test with fuels of pitch 6 showed better increase in the regression rate than in the pitch 100 when no swirler was imposed. This is due to the generation of strong turbulences in the oxidizer stream along the pitch 6 configuration. However, the regression rate could be increased further in the fuel with pitch 100 than with pitch 6 when swirl flow was imposed by Type II injector. This result implied that the fuel with pitch 100 could take a role of sustainer of the imposed swirl by swirler II instead of turbulence generator.

The Effects of Carbon Dioxide as Additives on Soot Formatio in Jet Diffusion Flames (제트확산화염에서 이산화탄소의 첨가가 매연생성에 미치는 영향)

  • Ji, Jung-Hoon;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.170-175
    • /
    • 2010
  • The effect of carbon dioxide addition on soot formation was investigated in jet diffusion flames in coflow. Flame temperature were measured with R-type thermocouple and the boundary temperature between blue and yellow flame was confirmed. Light-extinction method was introduced for the relative soot density (1-I/$I_0$) in the in-flame region. He-Ne laser with wave length at 632.8 nm was used for the light source, and the signal attenuated by absorption and scattering was detected directly. Oxidizer velocity effect on soot formation was studied to know that the thermal influence for soot formation. The results showed that the temperature of both blue and yellow flame were decreased according to the dilution of carbon dioxide but boundary temperature was nearly constant. The relative soot density was lower when carbon dioxide was added in oxidizer stream and oxidizer velocity increased. These were caused by the reduction of flame temperature and shorter residence time for soot growth. Also carbon dioxide addition enhanced the instability of jet flames like flickering, so the flame length was a little longer than pure ethylene/air flame.

Comparison of Fuel-NOx Formation Characteristics in Conventional Air and Oxyfuel Combustion Conditions (일반 공기 및 순산소 연소 조건에서 Fuel-NOx 생성 특성의 비교)

  • Woo, Mino;Park, Kweon Ha;Choi, Byung Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.481-488
    • /
    • 2013
  • Nitric oxide ($NO_x$) formation characteristics in non-premixed diffusion flames of methane fuels have been investigated experimentally and numerically by adding 10% ammonia to the fuel stream, according to the variation of the oxygen ratio in the oxidizer with oxygen/carbon dioxide and oxygen/nitrogen mixtures. In an experiment of coflow jet flames, in the case of an oxidizer with oxygen/carbon dioxide, the $NO_x$ emission increased slightly as the oxygen ratio increased. On the other hand, in case of an oxygen/nitrogen oxidizer, the $NO_x$ emission was the maximum at an oxygen ratio of 0.7, and it exhibited non-monotonic behavior according to the oxygen ratio. Consequently, the $NO_x$ emission in the condition of oxyfuel combustion was overestimated as compared to that in the condition of conventional air combustion. To elucidate the characteristics of $NO_x$ formation for various oxidizer compositions, 1D and 2D numerical simulations have been conducted by adopting one kinetic mechanism. The result of 2D simulation for an oxidizer with oxygen/nitrogen well predicted the trend of experimentally measured $NO_x$ emissions.

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.