• 제목/요약/키워드: Oxidizer Pump

검색결과 40건 처리시간 0.028초

액체로켓엔진용 산화제펌프에 대한 액체산소 성능시험 (Liquid Oxygen Test of Oxidizer Pump of a Liquid Rocket Engine)

  • 홍순삼;김대진;김진선;김진한
    • 한국항공우주학회지
    • /
    • 제37권8호
    • /
    • pp.805-811
    • /
    • 2009
  • 가스발생기 사이클의 추력 30톤급 엔진에 적용 가능한 터보펌프의 구성품인 산화제펌프에 대하여 실제 작동 유체인 액체산소를 이용한 시험이 이루어졌다. 본 시험에서 터빈은 상온 수소 가스로 구동되었다. 산화제펌프는 설계점 및 탈설계점에서 안정적으로 작동되었고 성능 요구조건을 만족시켰다. 액체산소를 매질로 하는 경우의 산화제펌프 양정계수는 물을 매질로 하는 경우에 비하여 약 2~3% 더 낮은 값을 보였다. 산화제펌프 구동에 필요한 동력과 터빈에서 생성되는 동력이 서로 잘 일치하였다.

액체로켓엔진의 2단 시동에 관한 연구 (A Study on the 2-Stage Startup of Liquid Rocket Engine)

  • 박순영;조원국
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.324-327
    • /
    • 2008
  • Two stage startup of high thrust liquid rocket engine can reduce the abrupt impulse to the vehicle and engine by changing oxidizer flow rate to the combustion chamber. Also it ensures stable ignition of combustion chamber against hard start and to prevent pump stall by the sudden supply of large mass flow rate. However high discharge pressure of oxidizer pump or temperature rise in gas generator may be a problem in applying the preliminary stage. To solve this problem, we analyzed the effect of the slope of oxidizer pump's head curve and the oxidizer mass flow rate to combustion chamber during preliminary stage using the rocket engine startup analysis code. A moderate slope(${\circleddash}{\sim}$-3) of head curve and 80% mass flow rate during preliminary stage can reduce the oxidizer pump discharge pressure by 15 to 20% comparing with the condition of ${\circleddash}$=-4.37 head curve and 70% mass flow rate. Also it can maintain the turbine inlet temperature rise within 50K from the nominal value.

  • PDF

수정된 후방 플로팅 링 실을 적용한 7톤급 터보펌프 산화제 펌프의 진동 및 압력 측정 (Measurements of Vibration and Pressure of an Oxidizer Pump for a 7-tonf Turbopump with a Modified Rear Floating Ring Seal)

  • 배준환;곽현덕;최창호;최종수
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.253-261
    • /
    • 2020
  • In this paper, we present an experimental investigation of the frequency characteristics and a visual inspection of an oxidizer pump with a modified rear-floating ring seal for a 7-tonf turbopump. An oxidizer pump typically operates at high rotational speeds and under cryogenic conditions. Despite its low hydraulic efficiency, the floating ring seal is frequently employed as a leakage control solution for turbomachinery because it effectively reduces abrasion by friction. When the oxidizer pump starts up, the floating ring moves excursively but locks up stably against the pump casing when the contact pressure increases. The compressive force on the floating ring depends on the hydrodynamic forces induced by the flow through the floating ring. This force is controlled by the nose position of the floating ring. Based on a validation test for a 7-tonf turbopump with two types of floating rings, we concluded that the floating ring with a small diameter nose can move easily with a low contact pressure in the cooling path. This leads to instability of the pressure fluctuation around the floating ring. In contrast, a floating ring with a large diameter nose has a high contact pressure and attaches strongly to the casing, which causes wear and frictional oxidation between the contact surfaces of the impeller and the floating ring.

75톤급 로켓엔진용 터보펌프의 실회전수 상사매질 시험 (Model-Fluid Full-Speed Test of a Turbopump for a 75 Ton Class Rocket Engine)

  • 홍순삼;김대진;김진한
    • 항공우주시스템공학회지
    • /
    • 제7권4호
    • /
    • pp.49-54
    • /
    • 2013
  • A turbopump for a 75 ton class liquid rocket engine was tested at full speed for 20 seconds using model fluid. Liquid nitrogen is used for the oxidizer pump, water for the fuel pump, and hot gas for the turbine. The non-cavitating head of pump from the turbopump assembly test showed a good agreement with that from the pump component test. The relative difference of turbine efficiency between the turbopump assembly test and the turbine component test was 0.3% only. Suction performance from the turbopump assembly test was higher than that of pump component test, which resulted from the thermodynamic effect of cavitation.

7톤급 액체로켓엔진 산화제펌프 임계속도 해석 (Critical Speed Analysis of a 7 Ton Class Liquid Rocket Engine Oxidizer Pump)

  • 전성민;윤석환;최창호
    • 항공우주시스템공학회지
    • /
    • 제9권1호
    • /
    • pp.1-6
    • /
    • 2015
  • A critical speed analysis of oxidizer pump was peformed for a 7 ton class liquid rocket engine as the third stage engine of the Korea Space Launch Vehicle II. Based on the previously developed experimental 30 ton class turbopump and presently developing 75 ton class turbopump for the first and second stage rocket engine of Korea Space Launch Vehicle II, a layout and configuration of the 7 ton class turbopump rotor assembly are determined. A ball bearing stiffness analysis and rotordynamic analysis are performed for both of the bearing unloaded condition and loaded condition. Structural flexibility of the oxidizer pump casing is also included to predict critical speeds. From the numerical analysis, it is confirmed that the rotor system acquires sufficient separate margin of critical speed as a sub-critical rotor even though decrease of critical speed due to the casing structural flexibility.

액체로켓엔진용 터보펌프의 고온 성능시험 (Hot Test of a Turbopump for a Liquid Rocket Engine)

  • 홍순삼;김대진;김진선;김진한
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.933-938
    • /
    • 2009
  • Hot test of a full-scale turbopump for a 30-ton-thrust liquid rocket engine was carried out. The turbopump is composed of an oxidizer pump, a fuel pump, and a turbine on a single shaft. Model fluid was used in the test, that is, hot air for the turbine and water for the pumps. The turbopump was operated stably at full speed for 120 seconds. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test are compared with those from the turbopump component tests which were performed at about half of the design rotational speed.

발사체 산화제 터널형 배관 성능시험 (Performance Test of an Oxidizer Tunnel-Type Pipe for Launch Vehicle)

  • 길경섭;한상엽;고현석;신동순;조인현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.273-277
    • /
    • 2009
  • 본 연구에서 적용한 발사체용 산화제 터널형 배관은 액체산소를 터보펌프까지 전달하는 장치로 산화제 탱크 하부에 설치된 연료탱크를 관통하여 설치된다. 터널형 배관은 연료탱크를 우회하여 설치되는 우회 배관에 비해 무게가 절감되나 열전달 표면적이 커져 연료 탱크에 저장된 연료의 온도를 변화 시킬 수 있다. 따라서 본 연구에서는 터널형 배관의 극저온 성능시험을 통하여 배관 특성 및 연료 탱크로의 열전달 현상을 고찰하였으며, 또한 발사체에 적용가능성을 확인하였다.

  • PDF

유로 단면 부분 폐쇄가 액체로켓엔진 성능 변화에 미치는 영향 (The Effect of Partial Blockage of Flow Passage to Performance Change of a Liquid Rocket Engine)

  • 조원국
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.67-72
    • /
    • 2015
  • The analysis has been performed on the blockage effect at the propellant flow passage in a liquid rocket engine. This simulates an example of emergency situation where flow passage is partially blocked. The analysis method has been validated by predicting the pump head and flow rate within 1% precision against the measured data of turbopump-gas generator coupled test. When the oxidizer passage is reduced it is predicted that the mixture ratio decreases, the oxidizer pump head increases and the gas generator pressure increases. When the fuel passage is reduced it is predicted that the mixture ratio increases, fuel flow rate decreases and the fuel pump head increases.

연소기 연소시험설비 산화제 공급시스템 해석 (Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System)

  • 정용갑;조남경;한영민
    • 한국추진공학회지
    • /
    • 제16권6호
    • /
    • pp.92-97
    • /
    • 2012
  • 발사체의 추진기관은 일반적으로 산화제와 연료를 연소실로 공급하여 추진력을 얻게 된다. 개발 중에 있는 한국형 발사체(KSLV-II) 2단 엔진의 경우 산화제로는 액체산소(Liquid Oxygen)를 사용하고 연료로는 JET-A1이 사용될 예정이다. 터보펌프 공급방식인 2단 엔진의 주요 구성은 연소기와 터보펌프, 엔진공급시스템 등으로 구성되어 있다. 액체 추진 엔진 개발을 위해서는 서브시스템인 연소기 개발이 선행되어야 하고 설계 및 제작된 연소기의 성능 검증은 연소기 연소시험설비(CCTF)에서 수행된다. 우주센터에 구축 예정인 연소기 연소시험설비에 대한 상세설계가 수행되었으며, 본 설계 결과를 기준으로 AMESim을 사용하여 산화제공급시스템에 대한 모델링을 수행하여 산화제 공급특성을 해석하였다.

연소기 연소시험설비 산화제 공급시스템 해석 (Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System)

  • 정용갑;조남경;한영민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.502-506
    • /
    • 2012
  • 발사체의 추진기관은 일반적으로 산화제와 연료를 연소실로 공급하여 추진력을 얻게 된다. 개발 중에 있는 한국형 발사체(KSLV-II) 2단 엔진의 경우 산화제로는 액체산소(Liquid Oxygen)를 사용하고 연료로는 JET-A1이 사용될 예정이다. 터보펌프 공급방식인 2단 엔진의 주요 구성은 연소기와 터보펌프, 엔진공급시스템 등으로 구성되어 있다. 액체 추진 엔진 개발을 위해서는 서브시스템인 연소기 개발이 선행되어야 하고 설계 및 제작된 연소기의 성능 검증은 연소기 연소시험설비(CCTF)에서 수행된다. 우주센터에 구축 예정인 연소기 연소시험설비에 대한 상세설계가 수행되었으며, 본 설계 결과를 기준으로 AMESim을 사용하여 산화제공급시스템에 대한 모델링을 수행하여 산화제 공급특성을 해석하였다.

  • PDF