• Title/Summary/Keyword: Oxidized material

Search Result 240, Processing Time 0.023 seconds

Study on Electrode Selection for Electrochemical Detection of Cadmium and Lead (카드뮴과 납 전기화학적 검출을 위한 전극선정에 관한 연구)

  • Kim, Hak-Jin;Kim, Ki-Young;Moh, Chang-Yeon;Cho, Han-Keun
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.404-409
    • /
    • 2008
  • Excessive presence of heavy metals in environment affects plants and fruits grown in the contaminated area. Rapid on-site monitoring of heavy metals can provide useful information for efficiently characterizing heavy metal-contaminated sites and for minimizing the exposure of the contaminated food crops to humans. This study reports on the evaluation of gold and glassy carbon (GC) electrodes with mercury or bismuth as a coating material for simultaneous determination of cadmium (Cd) and lead (Pb) in 0.1 M $HNO_3$ solution by anodic stripping voltammetry (ASV). The use of a square-wave voltammetric potential between a working electrode and a reference electrode caused Cd and Pb ions deposited on the electrode surface to be oxidized, thereby generating electric currents at different potentials. The mercury-coated gold electrode was not sensitive enough to detect the usable range of Cd concentrations (1 to 100 ppb). The GC electrodes with mercury or bismuth displayed well-defined, sharp and separate current peaks for Cd and Pb ions when the square-wave voltammetric potentials were applied. The peak currents measured with both mercury- and bismuth- coated GC electrodes were linearly proportional to Cd and Pb concentrations in the range of 1 to 200 ppb in 0.1 M $HNO_3$ with strong linear relationships between concentration and peak current ($R^2$ > 0.95), indicating that both of Cd and Pb ions could be quantitatively measured.

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Enhancement of Photovoltaic Performance of Fluorescence Materials added TiO2 electrode in Dye-sensitized Solar Cells (형광물질을 이용한 염료감응태양전지의 효율향상)

  • Cheon, JongHun;Lee, JeongGwan;Jung, MiRan;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies and low cost processes compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photo excited dyes into the conduction band of the semiconductor electrode. The oxidized dye is reduced by the hole injection into either the hole conductor or the electrolyte. Thus, the light harvesting effect of dye plays an important role in capturing the photons and generating the electron/hole pair, as well as transferring them to the interface of the semiconductor and the electrolyte, respectively. We used the organic fluorescence materials which can absorb short wavelength light and emit longer wavelength region where dye sensitize effectively. In this work, the DSSCs were fabricated with fluorescence materials added $TiO_2$ photo-electrode which were sensitized with metal-free organic dyes. The photovoltaic performances of fluorescence aided DSSCs were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were measured in order to characterize the effects of the additional light harvesting effect in DSSC. Electro-optical measurements were also used to optimize the fluorescence material contents on TiO2 photo-electrode surface for higher conversion efficiency (${\eta}$), fill factor (FF), open-circuit voltage (VOC) and short-circuit current (ISC). The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Role of oxygen in plasma induced chemical reactions in solution

  • Ki, Se Hoon;Uhm, Han Sup;Kim, Minsu;Baik, Ku Youn;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.208.2-208.2
    • /
    • 2016
  • Many researchers have paid attention to the studies on the interaction between non-thermal plasma and aqueous solutions for biomedical applications. The gas composition in the plasma is very important. Oxygen and nitrogen are the main gases of interest in biological applications. Especially, we focus on the oxygen concentration. In this experiment, we studied the role of oxygen concentration in plasma induced chemical reactions in solution. At first, the amount of ions are measured according to changing the oxygen concentration. And we checked the relationship between these ions and pH value. Secondly, when the oxygen concentration is changed, it identified the type and amount of radical generated by the plasma. In order to confirm the effect of these chemical property change to biological material, hemoglobin and RBCs are chosen. RBCs are one of the common basic biological cells. Thirdly, when plasma treated according to oxygen concentration in nitrogen feeding gas, oxidation of hemoglobin and RBC is checked. Finally, membrane oxidation of RBC is measured to examine the relation between hemoglobin oxidation and membrane damage through relative hemolysis and Young's modulus. Our results suggest that reactive species generated by the plasma differsdepending on the oxygen concentration changes. The pH values are decreased when oxygen concentration increased. OH decrease and NO increase are also observed. These reactive species makes change of chemical properties of solution. We also able to confirm that the difference in these reactive species to affect the oxidation of the Hb and RBCs. The Hb and RBCs are more oxidized with the high oxygen concentration conditions. But membrane is damaged more by plasma treatment with only nitrogen gas. It is shown that red blood cells membrane damage and oxidation of hemoglobin are not directly related.

  • PDF

Fabrication, temperature-dependent local structural and electrical properties of VO2 thin films

  • Jin, Zhenlan;Hwang, In-Hui;Park, Chang-In;Han, Sang-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.169.2-169.2
    • /
    • 2015
  • $VO_2$ is a well-known a metal-to-insulator-transition (MIT) material, accompanied with a first order structural phase transition near room temperature. Because of the structural phase transition and the MIT occur near a same temperature, there is an ongoing argument whether the MIT is induced by the structural phase transition. $VO_2$ exhibits a relatively weak anti-oxidization ability and can be oxidized to higher-valence oxides (e.g., $V_4$ $O_7$ or $V_2$ $O_5$) when annealed at a high temperature in an oxygen-rich atmosphere. We fabricated $VO_2$ films on $Al_2$ $O_3$ (0001) substrates using a DC magnetron sputtering deposition process with carefully control the $O_2$ percentage in an atmosphere. X-ray diffraction measurements from the films showed only (0l0) peaks with no extra peaks, indicating b-oriented films. The temperature-dependent local structural properties of $VO_2$ films were investigated by using in-situ X-ray absorption fine structure (XAFS) measurements at the V K edge. XAFS revealed that the structural phase transition was occurred nearly $70^{\circ}C$ for heating process and reproducible. Resistance measurements as a function of temperature (R-T) demonstrated that the resistance of $VO_2$ films was changed by a factor of 4 near $75^{\circ}C$ which was higher than $68^{\circ}C$ reported from a $VO_2$ bulk. We will discuss the MIT of $VO_2$ films, comparing with the local structural properties determined by XAFS measurements.

  • PDF

The Effect of Oxidation/Reduction of Sulfide Mineral on Its Recovery by Flotation (산화(酸化)/환원(還元) 조건(條件)에 따른 황화광물(黃化鑛物)의 부유선별(浮游選別)에 의한 회수성(回收性) 변화(變化))

  • Kim, Dong-Su
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.12-16
    • /
    • 2007
  • The influence of oxidation on the floatability of sulfide minerals contained in mine failings has been investigated employing chalcopyrite as a target material. The critical surface tension of chalcopyrite was estimated to be about 15.5 dyne/cm based on Zisman plot and the floatability of chalcopyrite was observed to increase with the concentration of collector. The enhanced float-ability of chalcopyrite at its initial stage of oxidation was considered to be due to the transformation of disulfide to elemental sulfur and the decrease in its floatability at further oxidation was presumably caused by the formation of sulfate and/or disulfur trioxide from elemental sulfur. When the oxidized chalcopyrite was reduced, its floatability was increased and the variation of the critical surface tension of chalcopyrite according to tile oxidation/reduction was interpreted by an energy diagram constructed by different bond energies between atoms.

Study on the development of mesa-type humidity sensors using porous silicon layer (다공질 실리콘층을 이용한 메사형 습도센서의 개발에 관한 연구)

  • Kim, Seong-Jeen
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 1999
  • A capacitance-type humidity sensor with mesa structure in which porous silicon layer is used as humidity-sensing material is developed and its humidity sensing properties are measured. This sensor has a structure where two electrodes are set on the up-side of the wafer against the past typical structure having these electrodes on the up and down-side of the wafer. Therefore, the sensor can be fabricated monolithically to be more compatible with the IC process technology, and is possible to detect more correct output capacitance by removing the effect of the parasitic capacitance from the bottom layer and other junctions. To do this, the sensor was fabricated using process such as localized formation of porous silicon, oxidation of porous silicon layer, and etching of oxidized porous silicon layer. From the completed samples, the dependence of capacitance on the relative humidity of 55 to 90% more was measured at room temperature. As the result, the measured capacitance increased monotonously higher at the low frequency of 120 Hz, where the capacitance was observed to increase over 300%.

  • PDF

NO Gas Sensing Properties of ZnO-SWCNT Composites (산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성)

  • Jang, Dong-Mi;Ahn, Se-Yong;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.

Surface Characteristics of Porous Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering in a Low Vacuum Atmosphere (저진공 분위기 전기방전소결에 의해 제조된 다공성 Ti-6Al-4V 임플란트의 표면특성 연구)

  • Hyun, C.Y.;Huh, J.K.;Lee, W.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.178-182
    • /
    • 2006
  • A single electro-discharge-sintering (EDS) pulse (1.0 kJ/0.7 g), from a $300{\mu}F$ capacitor, was applied to atomized spherical Ti-6Al-4V powder in a low vacuum to produce porous-surfaced implant compacts. A solid core surrounded by a porous layer was formed by a discharge in the middle of the compact. XPS (X-ray photoelectron spectroscopy) was used to study the surface characteristics of the implant material. C, O, and Ti were the main constituents, with smaller amounts of Al, V, and N. The implant surface was lightly oxidized and was primarily in the form of $TiO_2$ with a small amount of metallic Ti. A lightly etched EDS implant sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V implant surface also contained small amounts of aluminum oxide in addition to $TiO_2$. However, V detected in the EDS Ti-6Al-4V implant surface, did not contribute to the formation of the oxide film..

The Effect of Biodiesel Oxidation Deterioration on Emission (바이오디젤의 산화가 배출가스에 미치는 영향)

  • Song, Hoyoung;Lee, Minho;Kim, Kiho;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.220.2-220.2
    • /
    • 2011
  • Biodiesel and biodiesel blend fuel are receiving increasing attention as alternative fuels for diesel engines without substantial modifications. Biodiesel fuels and blending have been widely studied and applied in diesel engine because of biodiesel's lower sulfur, lower aromatic hydrocarbon and higher oxygen content. Biodiesels have the potential to be oxidized in different condition. It has reported that oxidation deterioration of biodiesel is different in the condition of storage and oxidation causes chemical property change of methyl esters. Sunlight intensity, temperature, material of container and contact surface with oxygen are key dominant factors accelerating oxidation deterioration. In this study, we chose temperature among key oxidation conditions and metal container filled with biodiesel was heated at about $110^{\circ}C$ for 10 days in order to accelerate oxidation deterioration. To better understand the effect of biodiesel blends on emission, steady state tests were conducted on a heavy duty diesel engine. The engine was fueled with Ultra Low Sulphur Diesel(ULSD), a blend of 10% and 20%(BD10, BD20) on volumetric basis, equipped with a common rail direct injection system and turbocharger, lives up to the requirements of EURO 3. The experimental results show that the blend fuel of normal biodiesel with BD10 and BD20 increased NOx. The result of PM was similar to diesel fuel on BD10, but the result of PM on BD20 was increased about 63% more than its of diesel. The blend fuel of Oxidation biodiesel with BD10 and BD20 increased NOx as the results of normal biodiesel. But PM was all increased on BD10 and BD20. Especially THC was extremely increased when test fuel contains biodiesel about 140% more than its of diesel. Through this study, we knew that oxidation deterioration of biodiesel affects emission of diesel engine.

  • PDF