Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.3.178

Surface Characteristics of Porous Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering in a Low Vacuum Atmosphere  

Hyun, C.Y. (Department of Materials Engineering, Seoul National University of Technology)
Huh, J.K. (Department of Materials Engineering, Seoul National University of Technology)
Lee, W.H. (Department of Advanced Materials Engineering, Sejong University)
Publication Information
Korean Journal of Materials Research / v.16, no.3, 2006 , pp. 178-182 More about this Journal
Abstract
A single electro-discharge-sintering (EDS) pulse (1.0 kJ/0.7 g), from a $300{\mu}F$ capacitor, was applied to atomized spherical Ti-6Al-4V powder in a low vacuum to produce porous-surfaced implant compacts. A solid core surrounded by a porous layer was formed by a discharge in the middle of the compact. XPS (X-ray photoelectron spectroscopy) was used to study the surface characteristics of the implant material. C, O, and Ti were the main constituents, with smaller amounts of Al, V, and N. The implant surface was lightly oxidized and was primarily in the form of $TiO_2$ with a small amount of metallic Ti. A lightly etched EDS implant sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V implant surface also contained small amounts of aluminum oxide in addition to $TiO_2$. However, V detected in the EDS Ti-6Al-4V implant surface, did not contribute to the formation of the oxide film..
Keywords
Ti-6Al-4V; implant; XPS; surface chemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Moulder, W. Stickle, P. Sobal and K. Bomber, Handbook of X-ray Photoelectron Spectroscopy, p.79, Perkin Elmer Corp., Eden Prairie, (1992)
2 T. Hanawa and M. Ota, Appl. Surf. Sci., 55, 269 (1992)   DOI   ScienceOn
3 W. H. Lee, J. W. Park, D. A. Puleo and J. Y. Kim, J. Mater. Sci., 35, 593 (2000)   DOI   ScienceOn
4 W. H. Lee and J. W. Park, J. Mater. Sci. Lett., 19, 925 (2000)   DOI   ScienceOn
5 W. H. Lee, S. J. Kim, W. J. Lee, C. S. Byun, D. K. Kim, J. Y. Kim, C. Y. Hyun, J. G. Lee and J. W. Park, J. Mater. Sci., 36, 3573 (2001)   DOI   ScienceOn
6 M. Ask, J. Lausmaa and B. Kasemo, Appl. Surf. Sci., 35, 283 (1989)   DOI   ScienceOn
7 N. R. Armstrong and R. K. Quinn, Surf. Sci., 67, 451 (1977)   DOI   ScienceOn
8 W. Gopel, J. A. Anderson, D. Frankel, M. Jaehnig, K. Phillips, J. A. Shaffer and G. Rocker, Surf. Sci., 139, 333 (1984)   DOI   ScienceOn
9 W. H. Lee and D. A. Puleo, J. Mater. Sci. Lett., 18, 817 (1999)   DOI   ScienceOn
10 J. F. Drummond, J. T. Dominici, P. J. Sammon, K. Okazaki, R. Geissler, M. I. Lifland, S. A. Anderson and W. Renshaw, J. Oral Irnplantol., 21, 295 (1995)
11 M. Spector, Biocompatibility of Orthopedic Implants, p.55, CRC Press, Boca Raton, (1982)
12 J. T. Dominici, P. J. Sammon, J. F. Drummond, M. I. Lifland, R. Geissler and K. Okazaki, J. Oral Implantol., 20, 299 (1994)
13 K. Okazaki, W. H. Lee, D. K. Kim and R. A. Kopczyk, J. Biomed. Mater, Res., 25, 1417 (1991)   DOI
14 S. Yue, R. M. Pilliar and G. C. Weatherly, J. Biomed. Mater, Res., 18, 1043 (1984)   DOI   ScienceOn
15 R. M. Pilliar, J. Biomed. Mater. Res., 21, 1 (1987)   DOI   ScienceOn
16 K. Asaoka, N. Kuwayama, O. Okuno and I. Miura, J. Biomed. Mater. Res., 19, 699 (1985)   DOI   ScienceOn
17 H. Q. Nguyen, D. A. Deporter, P. M. Pilliar, N. Valiquette and R. Yakubovich, Biomater., 25, 865 (2004)   DOI   ScienceOn
18 V. Amigo, M. D. Salvador, F. Romero, C. Solves and J. F. Moreno, J. Mater. Proc. Technol., 14, 117 (2003)   DOI   ScienceOn
19 M. Spector, Biocompatibility of Orthopedic Implants, p.89, CRC Press, Boca Raton, (1982)