• 제목/요약/키워드: Oxide scale

검색결과 490건 처리시간 0.027초

5V-Programmable E$^2$PROM을 위한 비휘발성 MONOS 기억소자의 Scale-down (scale-down of the Nonvolatile MONOS Memory Devices for the 5V-Programmable E$^2$PROM)

  • 이상배;이상은;김선주;서광열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.33-36
    • /
    • 1994
  • The characteristics of the nonvolatile MONOS memory devices as the nitride thickness is scaled down while maintaining constant tunneling oxide thickness and blocking oxide thickness have been investigated in order to obtain the 5V-programmable E$^2$PROM. We have found that 1V memory window for a 5V programming voltage and 10 year data retention can be achieved in the scaled MONOS memory devices with a 50 blocking oxide, a 57 nitride and a 19 tunneling oxide.

TiAl계 XD45, XD47 금속간 화합물의 고온산화거동 (High Temperature Oxidation of TiAl-based XD 45 and XD47 Intermetallics)

  • 심웅식;이동복
    • 한국표면공학회지
    • /
    • 제35권4호
    • /
    • pp.193-198
    • /
    • 2002
  • Alloys of XD45 (Ti45A12Nb2Mn-0.8vol%TiB$_2$) and XD47 (Ti47A12Nb2Mn-0.8vol%TiB$_2$) were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The oxide scales consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_2$$O_3$-rich layer, and an inner mixed layer of ($TiO_2$+$Al_2$$O_3$). Nb tended to present at the lower part of the oxide scale, whereas Mn at the upper part of the oxide scale. The Pt marker tests indicated that the outer oxide layer grew primarily by the outward diffusion of Ti and Mn, and the inner mixed layer by the inward transport of oxygen.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

원자힘현미경을 이용한 탄화규소 미세 패터닝의 Scanning Kelvin Probe Microscopy 분석 (Scanning Kelvin Probe Microscope analysis of Nano-scale Patterning formed by Atomic Force Microscopy in Silicon Carbide)

  • 조영득;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.32-32
    • /
    • 2009
  • Silicon carbide (SiC) is a wide-bandgap semiconductor that has materials properties necessary for the high-power, high-frequency, high-temperature, and radiation-hard condition applications, where silicon devices cannot perform. SiC is also the only compound semiconductor material. on which a silicon oxide layer can be thermally grown, and therefore may fabrication processes used in Si-based technology can be adapted to SiC. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, we investigated that the local oxide growth on SiC under various conditions and demonstrated that an increased (up to ~100 nN) tip loading force (LF) on highly-doped SiC can lead a direct oxide growth (up to few tens of nm) on 4H-SiC. In addition, the surface potential and topography distributions of nano-scale patterned structures on SiC were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the nano-scale patterned on SiC was higher than that of original SiC surface. The results confirm the concept of the work function and the barrier heights of oxide structures/SiC structures.

  • PDF

황색산화철을 포함하는 혼합형 고체추진제의 특성에 관한 연구 (2) (Composite Solid Propellants for Propulsion System Including a Yellow Iron Oxide (2))

  • 박성준;김경민;박정호;노태호;최성한
    • 한국추진공학회지
    • /
    • 제24권3호
    • /
    • pp.12-17
    • /
    • 2020
  • 황색 산화철을 적용한 추진제의 기계적 특성은 적색산화철을 적용한 추진제와 비교하여 기계적물성이 다소 증가하였다. 또한 황색산화철을 적용한 추진제는 두 종류의 AP 입자를 사용하였으며 총량을 유지하고 작은 입자의 AP 비율 증가 시 연소속도가 증가하였다. 황색산화철을 첨가한 추진제는 압력 지수 값이 0.5인 17.5 mm/sec 이하의 운용조건에서 추진기관에 적용 가능하다. 혼합 믹서 Scale-up 시연소속도 감소, 최대인장강도 감소, 최대인장강도에서의 연신율은 증가하였다. 황색산화철은 내열재/라이너/추진제 사이의 접착력에는 큰 영향을 끼치지 않는다.

새로운 $TiSi_2$ 형성방법과 STI를 이용한 초박막 게이트 산화막의 특성 개선 연구 (Study of Improvement of Gate Oxide Quality by Using an Advanced, $TiSi_2$ process & STI)

  • 엄금용;오환술
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.41-44
    • /
    • 2000
  • Ultra large scale integrated circuit(ULSI) & complementary metal oxide semiconductor(CMOS) circuits require gate electrode materials such as meta] silicides, titanium-silicide for gate oxides. Many previous authors have researched the improvements sub-micron gate oxide quality. However, little has been done on the electrical quality and reliability of ultra thin gates. In this research, we recommend novel shallow trench isolation structure and two step TiSi$_{2}$ formation for sub 0.1${\mu}{\textrm}{m}$ gate oxide.

  • PDF

TiB$_2$ 세라믹스의 산화 (The Oxidation of TiB$_2$ Ceramics)

  • 이동복;이영찬
    • 한국표면공학회지
    • /
    • 제34권1호
    • /
    • pp.25-32
    • /
    • 2001
  • $TiB_2$ ceramics were oxidized at 800, 900 and $1000^{\circ}C$ in air for 40 hr, and their oxidation property was investigated using TGA, XRD, SEM and EPMA. The oxidation resistance decreased with an increase in oxidation temperature. The scale was essentially composed of $TiO_2$ only. $B_2$$O_3$ formed during oxidation escaped from the $TiO_2$ oxide scale owing to its high vapor pressure. This made the oxide scale highly porous and thick. The oxidation reaction was mainly governed by the inward transport of oxygen.$ TiO_2$ existing at the outermost scale grew into peculiarly shaped blades, as the reaction progressed.

  • PDF

나주 복암리 유적 출토 단조박편의 미세조직을 통한 단야 공정 기술체계 연구 (Forging Process Technology as Observed in the Microstructure of a Hammer Scale Excavated from the Naju Bogam-ri Remains)

  • 송정일;우기도
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.599-603
    • /
    • 2012
  • The microstructure of a hammer scale excavated from the Bogam-ri was examined in an effort to understand the iron technologies applied in the manufacturing of an iron forging process technology. The microstructures of oxide layer in the hammer scale were found to have crucial information about the ancient iron forging process treatment. The microstructure observed in the hammer scale can be distinguished by the forging process. First, the microstructure of the oxide layer in the hammer scale created by the forging process is Wstite (FeO) in the form of leaves. Latterly, the microstructure of the $W{\ddot{u}}stite$(FeO) in the hammer scale is observed to be in the form of a flat shape formed by a repeating forging process.

Nano-CMOSFET를 위한 플라즈마-질화막의 초기 산화막 성장방법에 따른 소자 특성과 저주파 잡음 특성 분석 (Dependence of Low-frequency Noise and Device Characteristics on Initial Oxidation Method of Plasma-nitride Oxide for Nano-scale CMOSFET)

  • 주한수;한인식;구태규;유옥상;최원호;최명규;이가원;이희덕
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, two kinds of initial oxidation methods i.e., SLTO(Slow Low Temperature Oxidation: $700^{\circ}C$) and RTO(Rapid Thermal Oxidation: $850^{\circ}C$) are applied prior to the plasma nitridation for ultra thin oxide of RPNO (Remote Plasma Nitrided Oxide). It is observed that SLTO has superior characteristics to RTO such as lower SS(Sub-threshold Slope) and improved Ion-Ioff characteristics. Low frequency noise characteristics of SLTO also showed better than RTO both in linear and saturation regime. It is shown that flicker noise is dominated by carrier number fluctuation in the channel region. Therefore, SLTO is promising for nano-scale CMOS technology with ultra thin gate oxide.

머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향 (Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.