• Title/Summary/Keyword: Oxide nano powder

Search Result 179, Processing Time 0.028 seconds

Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems (마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성)

  • 홍대석;이성희;이충효;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.247-252
    • /
    • 2004
  • Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

Leaves of Raphanus sativus L. Shows Anti-Inflammatory Activity in LPS-Stimulated Macrophages via Suppression of COX-2 and iNOS Expression.

  • Park, Hye-Jin;Song, Minjung
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • Raphanus sativus L. (RS) is a cruciferous vegetable that is widely consumed in Korea. The anticancer activity of leaves of RS (RSL) extract has been investigated; however, no studies focused on its anti-inflammatory effects. Therefore, the aim of the current study was to evaluate the anti-inflammatory effects of RSL extract. In brief, RSL powder was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol, and water-soluble fractions. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with each fraction for initial screening. It was found that the chloroform fraction significantly inhibited nitric oxide release in LPS-stimulated RAW264.7 cells with a half maximal inhibitory concentration value of $196{\mu}g/mL$. In addition, the mRNA and protein expression levels of inducible nitric oxide synthase, measured using reverse transcriptase-polymerase chain reaction and western blotting, respectively, were reduced in a concentration-dependent manner. Moreover, the inflammatory cyclooxygenase-2 enzyme expression decreased. Furthermore, the expression of nuclear factor-kappa B ($NF-{\kappa}B$), the key regulator of the transcriptional activation of the inflammatory cytokine genes, was reduced by the RSL chloroform fraction. Therefore, the results of our study suggest that RSL exhibits anti-inflammatory effects in LPS-stimulated macrophages via $NF-{\kappa}B$ inactivation.

Preparation of Suspension in La2O3-Gd2O3-ZrO2 System via Planetary Mill and Characteristics of (La1-xGdx)2Zr2O7 Coatings Fabricated via Suspension Plasma Spray (유성구볼밀을 이용한 La2O3-Gd2O3-ZrO2 계 서스펜션준비와 서스펜션 플라즈마용사를 이용한 (La1-xGdx)2Zr2O7 코팅증착과 특성)

  • Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.

Synthesis of Nickel Oxide (NiO) nanoparticles using nickel(II) nitrate hexahydrate as a precursor (Nickel(II) nitrate hexahydrate를 전구체로 사용한 산화니켈(NiO) 나노입자의 합성)

  • Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.593-599
    • /
    • 2023
  • Nickel oxide (NiO) nanoparticles were successfully synthesized by a simple liquid phase process for producing ceramics powder using a precursor impregnated with a nickel(II) nitrate hexahydrate aqueous solution in an industrial pulp. The microfibrile structure of the precursor impregnated with nickel nitrate hexahydrate aqueous solution was confirmed by scanning electron microscope (SEM), and the crystal structure and particle size of nickel oxide (NiO) particles produced as the heat treatment temperature of the precursor were analyzed by X-ray diffraction (XRD) and SEM. As a result, it was confirmed through XRD and SEM analysis that the temperature at which the organic material of the precursor is completely thermally decomposed was 495-500℃, and the size and crystallinity of the nickel oxide particles produced increased as the heat treatment temperature increased. The size of the nickel oxide particles obtained by heat treatment at 500-800℃ for 1 hour was 50-200 nm. It was confirmed by XRD and SEM analysis that a NiO crystal phase was formed at a heat treatment temperature of 380℃, only a single NiO phase existed until 800℃.

Effect of Substrate Temperature and Growth Duration on Palladium Oxide Nanostructures (팔라듐 옥사이드 나노구조물의 성장에서 기판 온도와 성장 시간의 효과)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2019
  • Palladium (Pd) is widely used as a catalyst and noxious gas sensing materials. Especially, various researches of Pd based hydrogen gas sensor have been studied due to the noble property, Pd can be adsorbed hydrogen up to 900 times its own volume. In this study, palladium oxide (PdO) nanostructures were grown on Si substrate ($SiO_2(300nm)/Si$) for 3 to 5 hours at $230^{\circ}C{\sim}440^{\circ}C$ using thermal chemical vapor deposition system. Pd powder (source material) was vaporized at $950^{\circ}C$ and high purity Ar gas (carrier gas) was flown with the 200 sccm. The surface morphology of as-grown PdO nanostructures were characterized by field-emission scanning electron microscopy(FE-SEM). The crystallographic properties were confirmed by Raman spectroscopy. As the results, the as-grown nanostructures exhibit PdO phase. The nano-cube structures of PdO were synthesized at specific substrate temperatures and specific growth duration. Especially, PdO nano-cube structrures were uniformly grown at $370^{\circ}C$ for growth duration of 5 hours. The PdO nano-cube structures are attributed to vapor-liquid-solid process. The nano-cube structures of PdO on graphene nanosheet can be applied to fabricate of high sensitivity hydrogen gas sensor.

Preparation and Characteristics of Polypyrrole/sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) Composite Electrode (폴리피롤/설폰화 폴리(2,6-디메틸-1,4-페닐렌 옥사이드) 복합전극의 제조 및 특성)

  • Huh, Yang-Il;Jung, Hong-Ryun;Lee, Wan-Jin
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.74-79
    • /
    • 2007
  • Polypyrrole (PPy) was made by an emulsion polymerization using iron (III) chloride ($FeCl_3$) as an initiator and dodecyl benzene sulfuric acid (DBSA) as an emulsifier and dopant. Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) was sulfonated by chlorosulfonic acid (CSA). The cathode was composed of $PPy^+DBS^-$ complex, conductor powder, and PPO or sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO) as a binder or dopant. The charge-discharge performance of $PPy^+DBS^-/SPPO$ cathode was increased as the extent of about 50%, than $PPy^+DBS^-/PPO$. This is because SPPO played a role as a binder as well as a dopant. In addition, sulfonation brings out the increase of miscibility between PPy and SPPO, and the increase of contact area between cathode and electrolyte.

Fabrication of Nano-Sized Complex Oxide Powder from Waste Solution Produced during Shadow Mask Processing by Spray Pyrolysis Process (새도우마스크 제조 공정중 발생되는 폐액으로부터 분무열분해 공정에 의한 복합산화물 나노 분말 제조)

  • Yu Jae-Keun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.38-46
    • /
    • 2003
  • In this study, nano-sized Ni-ferrite and $Fe_2$$O_3$+NiO powder was fabricated by spray pyrolysis process in the condition of 1kg/$\textrm{cm}^2$ air pressure using the Fe-Ni complex waste acid solution generated during the manufacturing process of shadow mask. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the concentration of raw material solution and the nozzle tip size on the properties of powder were studied. As the reaction temperature increased from $800 ^{\circ}C$ to $1100^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the structure of the powder gradually became solid, yet the distribution of the particle size appeared more irregular. Along with the increase of the reaction temperature, the fraction of the Ni-ferrite phase were also on the rise, and the surface area of the powder was greatly reduced. As the concentration of Fe in solution increased from 20g/l to 200g/l, the average particle size of the powder gradually increased from 30 nm to 60 nm, while the distribution of the particle size appeared more irregular. Along with the increase of the concentration of solution, tie fraction of the Ni-ferrite phase was on the rise, and the surface area of the powder was greatly reduced. Along with the increase of the nozzle tip size, the distribution of the particle size appeared more irregular, yet the average particle size of the powder showed no significant change. As the nozzle tip size increased from 1 mm to 2 mm, the fraction of the Ni-ferrite phase showed no significant change, while the surface area of the powder slightly reduced. As the nozzle tip size increased to 3 mm and 5 mm, the fraction of the Ni-ferrite phase gradually reduced, and the surface area of the powder slightly increased.

Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure (초고압을 이용한 나노급 마그네시아 분말의 저온 소결 연구)

  • Song, Jeongho;Eom, Junghye;Noh, Yunyoung;Kim, Young-Wook;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.226-230
    • /
    • 2013
  • We performed high pressure high temperature (HPHT) sintering for the 20 nm MgO powders at the temperatures from $600^{\circ}C$ to $1200^{\circ}C$ for only 5 min under 7 GPa pressure condition. To investigate the microstructure evolution and physical property change of the HPHT sintered MgO samples, we employed a scanning electron microscopy (SEM), density and Vickers hardness measurements. The SEM results showed that the grain size of the sintered MgO increased from 200 nm to $1.9{\mu}m$ as the sintering temperature increased. The density results showed that the sintered MgO achieved a more than 95% of the theoretical density in overall sintering temperature range. Based on Vickers hardness test, we confirmed that hardness increased as temperature increased. Our results implied that we might obtain the dense sintered MgO samples with an extremely short time and low temperature HPHT process compared to conventional electrical furnace sintering process.

Synthesis of Tungsten Boride using SHS(Self-propagating High-temperature Synthesis) and Effect of Its Parameters (자전연소 합성법을 이용한 W-B 화합물 합성 및 조건 변수의 영향)

  • Choi, Sang-Hoon;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Due to their unique properties, tungsten borides are good candidates for the industrial applications where certain features such as high hardness, chemical inertness, resistance to high temperatures, thermal shock and corrosion. In this study, conditions were investigated for producing tungsten boride powder from tungsten oxide($WO_3$) by self-propagating high-temperature synthesis (SHS) followed by HCl leaching techniques. In the first stage of the study, the exothermicity of the $WO_3$-Mg reaction was investigated by computer simulation. Based on the simulation experimental study was conducted and the SHS products consisting of borides and other compounds were obtained starting with different initial molar ratios of $WO_3$, Mg and $B_2O_3$. It was found that $WO_3$, Mg and $B_2O_3$ reaction system produced high combustion temperature and radical reaction so that diffusion between W and B was not properly occurred. Addition of NaCl and replacement of $B_2O_3$ with B successfully solved the diffusion problem. From the optimum condition tungsten boride($W_2B$ and WB) powders which has 0.1~0.9 um particle size were synthesized.

Synthesis and Characterization of Spherical Nano Ni(1-x)-M(x=0~0.15)(M=Co, Fe) Alloy Powder for SOFC Anode (SOFC anode용 나노구형 Ni(1-x)-M(x=0~0.15)(M=Co, Fe) alloy 분말 합성 및 그 특성)

  • Lee, Min-Jin;Choi, Byung-Hyun;Ji, Mi-Jung;An, Young-Tae;Hong, Sun-Ki;Kang, YoungJin;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.367-373
    • /
    • 2014
  • In this study, the reducing agent hydrazine and precipitator NaOH were used with $NiCl_2$ as a starting material in order to compound Ni-based material with spherical nano characteristics; resulting material was used as an anode for SOFC. Synthetic temperature, pH, and solvent amounts were experimentally optimized and the synthesis conditions were confirmed. Also, a 0 ~ 0.15 mole ratio of metal(Co, Fe) was alloyed in order to increase the catalyst activation performance of Ni and finally, spherical nano $Ni_{(1-x)}-M_{(x=0{\sim}0.15)}$(M = Co, Fe) alloy materials were compounded. In order to evaluate the catalyst activation for hydrocarbon fuel, fuel gas(10%/$CH_4$+10%/Air) was added and the responding gas was analyzed with GC(Gas Chromatography). Catalyst activation improvement was confirmed from the 3% hydrogen selectivity and 2.4% methane conversion rate in $Ni_{0.95}-Co_{0.05}$ alloy; those values were 4.4% and 19%, respectively, in $Ni_{0.95}-Fe_{0.05}$ alloy.