Browse > Article
http://dx.doi.org/10.5762/KAIS.2019.20.4.458

Effect of Substrate Temperature and Growth Duration on Palladium Oxide Nanostructures  

Kim, Jong-Il (Department of Advanced Chemical Engineering, Mokwon University)
Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.20, no.4, 2019 , pp. 458-463 More about this Journal
Abstract
Palladium (Pd) is widely used as a catalyst and noxious gas sensing materials. Especially, various researches of Pd based hydrogen gas sensor have been studied due to the noble property, Pd can be adsorbed hydrogen up to 900 times its own volume. In this study, palladium oxide (PdO) nanostructures were grown on Si substrate ($SiO_2(300nm)/Si$) for 3 to 5 hours at $230^{\circ}C{\sim}440^{\circ}C$ using thermal chemical vapor deposition system. Pd powder (source material) was vaporized at $950^{\circ}C$ and high purity Ar gas (carrier gas) was flown with the 200 sccm. The surface morphology of as-grown PdO nanostructures were characterized by field-emission scanning electron microscopy(FE-SEM). The crystallographic properties were confirmed by Raman spectroscopy. As the results, the as-grown nanostructures exhibit PdO phase. The nano-cube structures of PdO were synthesized at specific substrate temperatures and specific growth duration. Especially, PdO nano-cube structrures were uniformly grown at $370^{\circ}C$ for growth duration of 5 hours. The PdO nano-cube structures are attributed to vapor-liquid-solid process. The nano-cube structures of PdO on graphene nanosheet can be applied to fabricate of high sensitivity hydrogen gas sensor.
Keywords
Growth Duration; Nanostructure; Palladium Oxide; Temperature Effect; Vapor Transport Method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Alfano, T. Polichetti, M. L. Miglietta, E. Massera, C. Schiattarella, F. Ricciardella, G. D. Francia, "Fully eco-friendly $H_{2}$ sensing device based on Pd-decorated graphene", Sensors and Actuators B, Vol. 239, pp. 1144-1152, February 2017. DOI:https://dx.doi.org/10.1016/j.snb.2016.08.039   DOI
2 H. Fayaz, R. Saidur, N. Razali, F. S. Anuar, A. R. Saleman, M. R. Islam, "An overview of hydrogen as a vehicle fuel", Renewable and Sustainable Energy Reviews, Vol. 16, pp. 5511-5528, July, 2012. DOI:https://dx.doi.org/10.1016/j.rser.2012.06.012   DOI
3 M. Johansson, E. Skulason, G. Nielsen, S. Murphy, R. M. Nielsen, I. Chorkendorff, "Hydrogen adsorption of palladium and palladium hydride at 1 bar", Surface Science, Vol. 604, Iss. 7-8, pp. 718-729, April 2010. DOI: https://dx.doi.org/10.1016/j.susc.2010.01.023   DOI
4 S. Ozturk, N. Kilinc, "Pd thin films on flexible substrate", Journal of Alloys and Compounds, Vol. 674, pp. 179-184, July 2016. DOI:https://dx.doi.org/10.1016/j.jallcom.2016.03.042   DOI
5 S. Y. Cho, H. A. Ahn, K. H. Park, J. H. Choi, H. H. Kang, H. T. Jung, "Ultrasmall grained Pd nanopattern $H_{2}$ sensor", ACS Sensors, Vol. 3, pp. 1876-1883, September, 2018. DOI:https://dx.doi.org/10.1021/acssensors.8b00834   DOI
6 J. C. Wataha, K. Shor, "Palladium alloys for biomedical devices", Expert Reviews Medical Devices, Vol. 7, No. 4, pp. 489-501, January, 2010. DOI:https://dx.doi.org/10.1586/ERD.10.25   DOI
7 O. B. Belskaya, R. M. Mironenko, V. P. Talsi, V. A. Rodionov, T. I. Gulyaeva, S. V. Sysolyatin, V. A. Likholobov, "The effect of preparation conditions of Pd/C catalyst on its activity and selectivity in the aqueous-phase hydrogenation of 2,4,6-trinitrobenzoic acid", Catalysis Today, Vol. 301, pp. 258-265, February, 2017. DOI:https://dx.doi.org/10.1016/j.cattod.2017.02.037   DOI
8 N. Chawla, A. Chamaani, M. Safa, B. E. Zahab, "Palladium-filled carbon nanotubes cathode for improved electrolyte stability and cyclability performance of $Li-O_{2}$ batteries", Journal of The Electrochemical Society, Vol. 164, No. 1, pp. A6303-A6307, December, 2016. DOI:http://dx.doi.org/10.1149/2.0491701jes   DOI
9 Brian Woodward, "Palladium in temporary and permanently implantable medical devices", Platinum Metals Review, Vol. 56, No. 3, pp. 213-217, July, 2012. DOI:https://dx.doi.org/10.1595/147106712X651748   DOI
10 Q. Wang, X. Cui, W. Guan, W. Zheng, J. Chen, X. Zheng, X. Zhang, C. Liu, T. Xue, H. Wang, Z. jin, H. Teng, "Synthesis of flower-shape palladium nanostructures on graphene oxide for electrocatalytic applications", Journal of Physics and Chemistry of Solids, Vol. 74, pp. 1470-1474, May, 2013. DOI:https://dx.doi.org/10.1016/j.jpcs.2013.05.008   DOI
11 K. jiang, W. B. Cai, "Carbon supported Pd-Pt nanocatalysts for formic acid electrooxidation: Synthetic screening and componential functions", Applied Catalysis B: Environmental, Vol. 147, pp. 185-192, August, 2013 DOI:https://dx.doi.org/10.1016/j.apcatb.2013.08.037   DOI
12 S. J. Ye, D. Y. Kim, S. W. Kang, K. W. Choi, S. W. Han, O. O. Park, "Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation", Nanoscale, Vol. 6, pp. 4182-4187, January, 2014. DOI:https://dx.doi.org/10.1039/c3nr06410g   DOI
13 A. Baylet, P. Marecot, D. Duprez, P. Castellazzi, G. Groppi, P. Forzatti, "In situ Raman and in situ XRD analysis of PdO reduction and Pd oxidation supported on ${\gamma}-Al_{2}O_{3}$ catalyst under different atmospheres", Physical Chemistry Chemical Physics, Vol. 13, pp. 4607-4613, December, 2011. DOI:https://dx.doi.org/10.1039/c0cp01331e   DOI
14 M. O. Orlandi, E. R. Leite, R. Aguiar, J. Bettini, E. Longo, "Growth of SnO nanobelts and dentrites by a self-catalytic VLS process", Journal of Physical Chemistry B, Vol. 110, pp. 6621-6625, February, 2006. DOI:https://doi.org/10.1021/jp057099m   DOI
15 J. R. McBride, K. C. Hass, W. H. Weber, "Resonance-Raman and lattice-dynamics studies of single-crystal PdO", Physical Review B, Vol. 44, Iss. 10, pp. 5016-5028, September, 1991. DOI:https://dx.doi.org/10.1103/PhysRevB.44.5016   DOI