• 제목/요약/키워드: Oxide Deposition

검색결과 1,530건 처리시간 0.032초

소수성 코팅을 위한 원자층 증착 희토류 금속산화물 (Rare Earth Oxide Atomic Layer Deposition for Hydrophobic Coating)

  • 이한보람
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2015
  • 소수성 코팅은 광범위하게 응용 가능하다. 희토류 금속 산화물(Rare earth oxides, REO)은 소수성 코팅 물질로써 우수한 열적 기계적 안정성으로 인해 전도유망하다. 본 연구는 원자층 증착법(Atomic layer deposition, ALD)을 이용한 나노 단위 두께의 희토류 금속 산화물 박막을 이용하여 소수성 코팅의 기초 연구이다. 미래 소수성 코팅 물질로써의 응용 가능성을 함께 다룬다.

  • PDF

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • 윤수복;김두현;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

L/L 진공시스템을 이용한 적층캐패시터의 하층산화막 박막화에 대한 연구 (A study on the bottom oxide scaling for dielectric in stacked capacitor using L/L vacuum system)

  • 정양희;김명규
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권5호
    • /
    • pp.476-482
    • /
    • 1996
  • The multi-dielectric layer SiO$_{2}$/Si$_{3}$N$_{4}$/SiO$_{2}$(ONO) is used to improve electrical capacitance and to scale down the memory device. In this paper, improvement of the capacitance by reducing the bottom oxide thickness in the nitride deposition with load lock(L/L) vacuum system is studied. Bottom oxide thickness under the nitride layer is measured by ellipsometer both in L/L and non-L/L systems. Both results are in the range of 3-10.angs. and 10-15.angs., respectively, independent of the nitride and top oxide thickness. Effective thickness and cell capacitance for SONOS capacitor are in the range of 50-52.angs. and 35-37fF respectively in the case of nitride 70.angs. in L/L vacuum system. Compared with non-L/L system, the bottom oxide thickness in the case of L/L system decreases while cell capacitance increases about 4 fF. The results obtained in this study are also applicable to ONO scaling in the thin bottom oxide region of memory stacked capacitor.

  • PDF

마이크로 박막 전지용 비정질 산화바나듐 박막의 제작 및 전기화학적 특성에 관한 연구 (A Study on The Fabrication and Electrochemical Characterization of Amorphous Vanadium Oxide Thin Films for Thin Film Micro-Battery)

  • 전은정;신영화;남상철;조원일;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.634-637
    • /
    • 1999
  • The amorphous vanadium oxide as a cathode material is very preferable for fabricating high performance micro-battery. The amorphous vanadium oxide cathode is preferred over the crystalline form because three times more lithium ions can be inserted into the amorphous cathode, thus making a battery that has a higher capacity. The electrochemical properties of sputtered films are strongly dependent on the oxygen partial pressure in the sputtering gas. The effect of different oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by r.f. reactive sputtering deposition were investigated. The stoichiometry of the as-deposited films were investigated by Auger electro spectroscopy. X-ray diffraction and atomic force microscopy measurements were carried out to investigate structural properties and surface morphology, respectively. For high oxygen partial pressure(>30% ), the films were polycrystalline V$_2$O$_{5}$ while an amorphous vanadium oxide was obtained at the lower oxygen partial pressure(< 15%). Half-cell tests were conducted to investigate the electrochemical properties of the vanadium oxide film cathode. The cell capacity was about 60 $\mu$ Ah/$\textrm{cm}^2$ m after 200 cycle when oxygen partial pressure was 20%. These results suggested that the capacity of the thin film battery based on vanadium oxide cathode was strongly depends on crystallinity.y.

  • PDF

Effect of O2 Partial Pressure on AlOx Thin Films Prepared by Reactive Ion Beam Sputtering Deposition

  • Seong, Jin-Wook;Yoon, Ki-Hyun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun
    • 한국세라믹학회지
    • /
    • 제41권5호
    • /
    • pp.364-369
    • /
    • 2004
  • The barrier and optical properties of AlO$_{x}$ thin films on polycarbonate deposited by Reactive Ion Beam Sputtering (RIBS) were investigated at different oxygen partial pressure. We measured the deposition rate of AlO$_{x}$ thin films. As the oxygen partial pres-sure increased, the deposition rate increased then decreased. The changes of deposition rate are associated with the properties of deposited films. The properties of deposited AlO$_{x}$ thin films were studied using X-ray Photoelectron Spectroscopy (XPS), Scan-ning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). Optimum deposition parameters were found for fabricat-ing aluminum oxide thin films with high optical transparency for visible light and low Oxygen Transmission Rate (OTR). The optical transmittance of AlO$_{x}$ thin film deposited on polycarbonate (PC) showed the same value of bare PC.bare PC.

유기발광 다이오드의 물성에 미치는 증착속도의 영향 (The Effects of Deposition Rate on the Physical Characteristics of OLEDs)

  • 이영환;차기호;김원종;이종용;김귀열;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.54-55
    • /
    • 2006
  • Organic light-emitting diodes(OLEOs) are attractive because of possible application in display with low operating voltage, low power consumption, self-emission and capability of multicolor emission by the selection of emissive material. We investigated the effects of deposition rate on the electrical characteristics, physical characteristics and optical characteristics of OLEOs in the ITO(indium-tin-oxide)/N.N'-diphenyl-N,N'-bis(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/Al device. We measured current density, luminous flux and luminance characteristics of devices with varying deposition rates of TPD and $Alq_3$. It has been found that optimal deposition rate of TPD and $Alq_3$ were respectively $1.5{\AA}/s$ from the device structure. An AFM measurement results, surface roughness of the deposited film was the lowest when deposition rate was $1.5{\AA}/s$.

  • PDF

원자층 증착법으로 제조된 Al-doped ZnO 투명전도막의 특성평가 (Characterization of Al-doped ZnO (AZO) Transparent Conductive Thin films Grown by Atomic Layer Deposition)

  • 정현준;신웅철;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.137-141
    • /
    • 2009
  • AZO transparent conductive thin films were grown on $SiO_2$/Si and glass substrates using diethylzinc (DEZ) and trimethylaluminium (TMA) as the precursor and $H_2O$ as oxidant by atomic layer deposition. The structural, electrical, and optical properties of the AZO films were characterized as a function of film thickness at a deposition temperature of $150^{\circ}C$. The AZO films with various thicknesses show well-crystallized phases and smooth surface morphologies. The 190-nm-thick AZO films grown on Coming 1737 glass substrates exhibit rms(root mean square) roughness of 8.8 nm, electrical resistivity of $1.5{\times}10^{-3}\;{\Omega}-cm$, and an optical transmittance of 84% at 600nm wavelength. Atomic layer deposition technique for the transparent conductive oxide films is possible to apply for the deposition on flexible polymer substrates.

Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화 (Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate)

  • 김우희;김범수;김형준
    • 한국진공학회지
    • /
    • 제19권1호
    • /
    • pp.14-21
    • /
    • 2010
  • Ge은 Si에 비하여 높은 이동도를 갖기 때문에 차세대 고속 metal oxide semiconductor field effect transistors (MOSFETs) 소자를 위한 channel 물질로서 각광받고 있다. 그러나 화학적으로 안정한 게이트 산화막의 부재는 MOS 소자에 Ge channel의 사용에 주요한 장애가 되어왔다. 특히, Ge 기판 위에 고품질의 계면 특성을 갖는 게이트 절연막의 제조는 필수 요구사항이다. 본 연구에서, $HfO_xN_y$ 박막은 Ge 기판 위에 플라즈마 원자층 증착법(plasma-enhanced atomic layer deposition, PEALD)을 이용하여 증착되었다. 플라즈마 원자층 증착공정 동안에 질소는 질소, 산소 혼합 플라즈마를 이용한 in situ 질화법에 의하여 첨가되었다. 산소 플라즈마에 대한 질소 플라즈마의 첨가로 성분비를 조절함으로써 전기적 특성과 계면 성질을 향상시키는데 초점을 맞추어서 연구를 진행하였다. 질소 산소의 비가 1:1이었을 때, EOT의 값의 10% 감소를 갖는 고품질의 소자특성을 보여주었다. X-ray photoemission spectroscopy (XPS)와 high resolution transmission electron microscopy (HR-TEM)를 사용하여 박막의 화학적 결합 구조와 미세구조를 분석하였다.