• Title/Summary/Keyword: Oxide Deposition

Search Result 1,530, Processing Time 0.028 seconds

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF

A study of the microstructures and electrical properties of $ZrO_2$ thin film on Si(100) (증착조건 및 열처리조건에 따른 $ZrO_2$박막의 미세구조와 전기적 특성에 관한 연구)

  • 유정호;남석우;고대홍;오상호;박찬경
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.341-345
    • /
    • 2000
  • We investigated the microstructures and the electrical properties of $ZrO_2$thin films deposited by reactive DC magnetron sputtering on (100) Si with different deposition conditions and annealing treatments. The refractive index of the $ZrO_2$ thin films increased with annealing temperatures and deposition powers, and approached to the ideal value of 2.0~2.2. The $ZrO_2$thin films deposited at the room temperature are amorphous, and the films are polycrystalline at the deposition temperature of $300^{\circ}C$. Both the thickness of the interfacial oxide layer and the root-mean-square (RMS) value of surface roughness increased upon annealing in the oxygen ambient. The Cmax value and leakage current value decreased with the increase of thickness of the interfacial oxide thickness.

  • PDF

Growth and dielectric Properties or $BaTiO_3/SrTiO_3$ oxide artificial superlattice deposited by pulsed laser deposition (PLD) (Pulsed laser depostion (PLD)법으로 증착된 $BaTiO_3/SrTiO_3$ 산화물 초격자의 성장 및 유전특성)

  • 김주호;김이준;정동근;김용성;이재찬
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.166-170
    • /
    • 2002
  • Artificial $BaTiO_3$(BTO)/$SrTiO_3$(STO) oxide superlattice have been deposited on MgO (100) single crystal substrate by pulsed laser deposition(PLD) method. The stacking periodicity of BTO/STO superlattice structure was varied from $BTO_{1\;unit\; cell}/STO_{1\;unit\; cell}$ to $BTO_{125\;unit\; cell}/STO_{125 \;unit \;cell}$ thickness with the total thickness of 100 nm. The result of X-ray diffraction showed the characteristics of superlattice in the BTO/STO multilayer structure. we have also confirmed that there was no interdiffusion at the interface between BTO and STO layers by high resolution transmission electron microscopy(HRTEM). The dielectric constant of superlattice increased with decreasing stacking periodicity of the BTO/STO superlattice within the critical thickness. The dielectric constant of the BTO/STO superlattice reached a maximum i.e., 1230 at a stacking perioicity of $BTO_{2\;unit\; cell}/STO_{2\;unit\; cell}$ .

Formation and Current-voltage Characteristics of Molecularly-ordered 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine film (분자배열된 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine 박막 제조와 전기적 특성)

  • Kang, Do Soon;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.506-510
    • /
    • 2007
  • Vacuum deposited 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine (1-TNATA), a widely-used semiconductor material, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in OLEDs and a well-stacked 1-TNATA layer leads to stable and high efficiency devices by reducing the carrier injection barrier at the interface between the ITO anode and hole transport layers. According to Raman spectra, thermal annealing after deposition as well as electromagnetic field treatment during deposition lead to closer stacking of 1-TNATA molecules and resulted in molecular ordering. By thermal annealing at about $110^{\circ}C$, an increase in current flow through the film by over 25% was observed. Molecularly-ordered 1-TNATA films played an important role in achieving higher luminance efficiency as well as higher power efficiency of the multi-layered organic EL devices in the present work. Electromagnetic field treatment during deposition was less effective compared to thermal annealing

Indium Tin Oxide(ITO) Thin Film Deposition on Polyethylene Terephthalate(PET) Using Ion Beam Assisted Deposition(IBAD)

  • Bae, J.W.;Kim, H.J.;Kim, J.S.;Lee, Y.H.;Lee, N.E.;Yeom, G.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.81-83
    • /
    • 2000
  • Tin-doped indium oxide(ITO) thin films were deposited on polyethylene terephthalate(PET) at room temperature by oxygen ion beam assisted evaporator system and the effects of oxygen gas flow rate on the properties of room temperature ITO thin films were investigated. Plasma characteristics of the ion gun such as oxygen ions and atomic oxygen radicals as a function of oxygen flow rate were investigated using optical emission spectroscopy(OES). Faraday cup also used to measure oxygen ion density. The increase of oxygen flow rate to the ion gun generally increase the optical transmittance of the deposited ITO up to 6sccm of $O_2$ and the further increase of oxygen flow rate appears to saturate the optical transmittance. In the case of electrical property, the resistivity showed a minimum at 6 sccm of $O_2$ with the increase of oxygen flow rate. Therefore, the improved ITO properties at 6 sccm of $O_2$ appear to be more related to the incorporation of low energy oxygen radicals to deposited ITO film rather than the irradiation of high energy oxygen ions to the substrate. At an optimal deposition condition, ITO thin films deposited on PET substrates showed the resistivity of $6.6{\times}10^{-4}$ ${\Omega}$ cm and optical transmittance of above 90%.

  • PDF

Preparation of $Ce_{0.8}Sm_{0.2}O_{x}$ Electrolyte Thin Film for Solid Oxide Fuel Cells by Electrophoretic Deposition (전기영동법을 이용한 고체산화물 연료전지용 $Ce_{0.8}Sm_{0.2}O_{x}$ 전해질 박막 제조)

  • Kim, Dong-Gyu;Song, Min-Wu;Lee, Kyeong-Seop;Kim, Yoen-Su;Kim, Young-Soon;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.781-785
    • /
    • 2011
  • In this work, a nano-sized samaria-doped ceria(SDC) was prepared by a urea-based hydrothermal method and characterized by XRD, FESEM and TEM. It was observed that the increase in synthesis time and temperature gave rise to crystallity and particles size. Moreover, the synthesised powders had a excellent ion-conductivity(0.1 S/cm at 600~$800^{\circ}C$) which is suitable for electrolyte of intermediate temperature-solid oxide fuel cell(IT-SOFC). Subsequently for use as electrolyte for anode-supported IT-SOFC, we tried to deposit the SDC powder on a porous NiO-SDC substrate by electrophoretic deposition(EPD) method. From the FESEM observation, a compact

Electrocatalytic Activity of Dendritic Platinum Structures Electrodeposited on ITO Electrode Surfaces (전기화학적 석출을 통해 ITO 표면에 형성한 덴드라이트 백금 구조의 전기화학적 촉매 활성)

  • Choi, Suhee;Choi, Kang-Hee;Kim, Jongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.209-215
    • /
    • 2014
  • We report on the electrocatalytic activities at Pt nanostructure surfaces electrodeposited with different deposition charges on indium tin oxide electrodes for oxygen reduction and methanol oxidation reactions. The surface properties of Pt nanostructures depending on deposition charges were characterized by scanning electron microscopy, electrochemical surface area measurement, X-ray diffraction, and CO stripping analysis, which were correlated to the electrocatalytic activities. Pt nanostructures with deposition charge of 0.03 C exhibited the highest electrocatalytic activity for oxygen reduction and methanol oxidation. The sharp sites of Pt nanostructure and the presence of highly active facet play a key role, whereas the electrochemical surface area does not significantly affect the electrocatalytic activity. The results obtained in this work with regard to the dependence of electrocatalytic activity on the variation of the Pt nanostructures will give insights into the development of advanced electrocatalytic systems.

Preparation of Electrolyte Thin Film for Anode Support Type Solid Oxide Fuel Cells by Electrophoretic Deposition and Dip-Coating (전착법과 담금법에 의한 음극지지형 SOFC 지르코니아 전해질막 제조)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.791-798
    • /
    • 1999
  • The preparation method of yttria-stabilized zirconia(YSZ) thin film for an anode support type solid oxide fuel cell(SOFC) by electrophoretic deposition(EPD) and dip-coating was studied. And the difference in both preparation method was investigated through basic understanding of processing parameters which may significantly affect weight microstruxcture and defect of film. In dip-coating the thickness of film increased with time until 30 s and then the weight of film decreased with time due to particle falling off from the coagulated film. In EPD although the weight of film increased with time and applied constant-current sagging of the film was observed when the applied current was less that 0.035 mA/$cm^2$ and more than 120 s. Since YSZ thin film by EPD on porous substrate was dense smooth and homogeneous it was expected to be suitable for the electrolyte of an anode support type SOFC.

  • PDF

Electrical Properties of Al2O3 Films Grown by the Electron Cyclotron Resonance Plasma-Enhanced Atomic Layer Deposition (ECR-PEALD) and Thermal ALD Methods (전자 사이클로트론 공명 플라즈마와 열 원자층 증착법으로 제조된 Al2O3 박막의 물리적·전기적 특성 비교)

  • Yang, Dae-Gyu;Kim, Yang-Soo;Kim, Jong-Heon;Kim, Hyoung-Do;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.295-300
    • /
    • 2017
  • Aluminum-oxide($Al_2O_3$) thin films were deposited by electron cyclotron resonance plasma-enhanced atomic layer deposition at room temperature using trimethylaluminum(TMA) as the Al source and $O_2$ plasma as the oxidant. In order to compare our results with those obtained using the conventional thermal ALD method, $Al_2O_3$ films were also deposited with TMA and $H_2O$ as reactants at $280^{\circ}C$. The chemical composition and microstructure of the as-deposited $Al_2O_3$ films were characterized by X-ray diffraction(XRD), X-ray photo-electric spectroscopy(XPS), atomic force microscopy(AFM) and transmission electron microscopy(TEM). Optical properties of the $Al_2O_3$ films were characterized using UV-vis and ellipsometry measurements. Electrical properties were characterized by capacitance-frequency and current-voltage measurements. Using the ECR method, a growth rate of 0.18 nm/cycle was achieved, which is much higher than the growth rate of 0.14 nm/cycle obtained using thermal ALD. Excellent dielectric and insulating properties were demonstrated for both $Al_2O_3$ films.

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF