• Title/Summary/Keyword: Oxide Deposition

Search Result 1,533, Processing Time 0.031 seconds

Growth and characterization of oxide buffer layer on IBAD_MgO template for HTS coated conductors (박막형 고온초전도 선재를 위한 산화물 완충층의 IBAD_MgO 기판에서의 성장과 특성)

  • Ko, Rock-Kil;Jang, Se-Hoon;Ha, Hong-Soo;Kim, Ho-Sup;Song, Kyu-Jeong;Ha, Dong-Woo;Oh, Sang-Soo;Park, Chan;Moon, Seung-Hyun;Kim, Young-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.297-297
    • /
    • 2008
  • Buffer layers play an important role in the development of high critical current density coated conductor. $LaMnO_3$, $SrTiO_3$ and $BaZrO_3$ buffer layers were compatible with MgO surfaces and also provide a good template for growing high current density REBCO(RE=Rare earth) films. Systematic studies on the influences of pulsed laser deposition parameters (deposition temperature, deposition pressure, processing gas, laser energy density, etc.) on microstructure and texture properties of $LaMnO_3$, $SrTiO_3$ and $BaZrO_3$ films as buffer layer deposited on ion-beam assisted deposition MgO (IBAD_MgO) template by pulse laser deposition method, were carried out. These results will be presented together with the discussion on the possible use of this material in HTS coated conductor as buffer.

  • PDF

Characteristics of amorphous indium tin oxide films on PET substrate grown by Roll-to-Roll sputtering system (저온 Roll-to-Roll 스퍼터 시스템을 이용하여 PET 기판위에 성막 시킨 ITO 박막의 전기적, 광학적, 구조적 특성)

  • Cho, Sung-Woo;Bae, Jung-Hyeok;Choi, Kwang-Hyuk;Moon, Jong-Min;Jeong, Jin-A;Jeong, Soon-Wook;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.380-381
    • /
    • 2007
  • This paper reports on the deposition conditions and properties of ITO films used as electrode layer in a organic light emitting diodes on a PET substrate. The deposition technique employed was specially designed roll-to-roll sputtering. The oxide was deposited at room temperature in an argon and oxygen plasma on a transparent conducting ITO layer on a PET film. The influence of deposition parameters such as DC power, working pressure and oxygen partial pressure has been investigated, in order to obtain the best compromise between a high deposition rate and adequate electro-optical properties. Electrical and optical properties of ITO films were analyzed by Hall measurement examinations with van der pauw geometry at room temperature and UV/Vis spectrometer analysis, respectively. In addition, the structural properties and surface smoothness were measured by x-ray diffraction and scaning electron microscopy, respectively. From optimized ITO films grown by roll-to-roll sputter system, good electrical$(6.44{\times}10^{-4}\;{\Omega}-cm)$ and optical(above 86 % at 550 nm) properties were obtained. Also, the ITO films exhibited amorphous structure and very flat surface beacause of low deposition temperature.

  • PDF

Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition (원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.

Low Temperature Preparation of Hafnium Oxide Thin Film for OTFT by Atomic Layer Deposition

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.247-250
    • /
    • 2008
  • Hafnium dioxide ($HfO_2$) thin film as a gate dielectric for organic thin film transistors is prepared by plasma enhanced atomic layer deposition (PEALD). Mostly crystalline of $HfO_2$ film can be obtained with oxygen plasma and with water at relatively low temperature of $200^{\circ}C$. $HfO_2$ was deposited as a uniform rate of $1.2\;A^{\circ}$/cycle. The pentacene TFT was prepared by thermal evaporation method with hafnium dioxide as a gate dielectric. The electrical properties of the OTFT were characterized.

Growth of Highly Purified Carbon Nanotubes by Thermal Chemical Vapor Deposition (열화학기상증착법에 의한 고순도 탄소나노튜브의 성장)

  • Yu, Jae-Geun;Park, Jeong-Hun;Kim, Dae-Un;Lee, Cheol-Jin;Son, Gwon-Hui;Sin, Dong-Hyeok;Mun, In-Gi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.649-653
    • /
    • 2000
  • We have grown carbon nanotubes by thermal chemical vapor deposition of $C_{2}H_{2}$ on catalytic metal deposited on silicon oxide substrates. Highly purified carbon nanotubes are uniformly grown on a large area of the silicon oxide substrates. It is observed that surface modification of catalytic metals deposited on substrates by either etching with dipping in a HF solution and/or $NH_{3}$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_{2}H_{2}$ gas. The diameters of carbon naotubes could be controlled by applying the different catalytic metals.

  • PDF

Polymerization of Tetraethoxysilane by Using Remote Argon/dinitrogen oxide Microwave Plasma

  • Chun, Tae-Il;Rossbach, Volker
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • Polymerization of tetraethoxysilane on a glass substrate was investigated by remote microwave plasma using argon with portions of nitrous oxide as carrier gas. Transparent layer like a thickness of 0.5 ${\mu}m$ 3 ${\mu}m$ were obtained, differing in chemical composition, depending on plasma power and treatment time as well as on ageing time. In general the milder the treatment and the shorter the ageing was, the higher was the content of organic structural elements in the layer. We have identified that the chemical structure of our samples composed of mainly Si O and Si C groups containing aliphatics, carbonyl groups. These results were obtained by X ray photon spectroscopy, Fourier transformed infrared spectroscopy, and scanning electron microscope combined with Energy dispersive X ray spectroscopy.

The Influence of Bi-Sticking Coefficient in Bi-2212 Thin Film

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.152-156
    • /
    • 2000
  • Bi-thin films are fabricated by an ion beam sputtering, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Effects of 4MP Doping on the Performance and Environmental Stability of ALD Grown ZnO Thin Film Transistor

  • Kalode, Pranav Y.;Sung, M.M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.471-471
    • /
    • 2013
  • Highly stable and high performance amorphous oxide semiconductor thin film transistors (TFTs) were fabricated using 4-mercaptophenol (4MP) doped ZnO by atomic layer deposition (ALD). The 4 MP concentration in ZnO films were varied from 1.7% to 5.6% by controlling Zn: 4MP pulses. The carrier concentrations in ZnO thin films were controlled from $1.017{\times}10^{20}$/$cm^3$ to $2,903{\times}10^{14}$/$cm^3$ with appropriate amount of 4MP doping. The 4.8% 4MP doped ZnO TFT revealed good device mobility performance of $8.4cm^2V-1s-1$ and on/off current ratio of $10^6$. Such 4MP doped ZnO TFTs were stable under ambient conditions for 12 months without any apparent degradation in their electrical properties. Our result suggests that 4 MP doping can be useful technique to produce more reliable oxide semiconductor TFT.

  • PDF

Array of 2-dimensions and Vertical Alignment of Zinc Oxide Micro Rod by the CBD Method (CBD법에 위한 ZnO 마이크로 막대 구조체의 2차원 배열 및 수직정렬)

  • Lee, Yeok-Kyoo;Nam, Hyo-Duk;Lee, Sang-Hwan;Jeon, Chan-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.682-688
    • /
    • 2009
  • A periodic away of zinc oxide(ZnO) micro-rods as fabricated by using chemical bath deposition and photo-lithography. Vertically aligned ZnO micro-rods array was successfully grown by chemical bath deposition method on ZnO seed layer. The ZnO seed layer was deposited on glass and the patterning was made by standard photo-lithography technique. The selective growth of ZnO micro-rods as achieved with the masked ZnO seed layer. The fabricated ZnO micro rods were found to be single crystalline and have grown along hexagonal c-axis direction of (0002) which is same as the preferred growth orientation of ZnO seed layer.

Manufacturing of Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition Reactor and Si Wafer Surface Cleaning by Hydrogen Plasma (초고진공 전자 사이클로트론 공명 화학 기상증착장치의 제작과 수소 플라즈마를 이용한 실리콘 기판 표면 세정화)

  • 황석희;태흥식;황기웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.63-69
    • /
    • 1994
  • The Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition(UHV-ECRCVD) system whose base pressure is 1${\times}10^{9}$ torr has been constructed. In-situ cleaning prior to the epitaxial growth was carried out at 56$0^{\circ}C$ by ECR generated uniform hydrogen plasma whose density is $10^{10}/cm{3}$. The natural oxide was effectively removed without damage by applying positive DC bias(+10V) to the substrate. RHEED(Reflection High Energy Electron Diffraction) analysis has been used to confirm the removal of the surgace oxide and the streaky 2$\times$1 reconstruction of the Si surface, and the suppression of the substrate damage is anaylized by X-TEM(cross-sectional Transmission Electron Microscopy). Surface cleaning technique by ECR hydrogen plasma confirmed good quality epitaxial growth at low temperature.

  • PDF