• Title/Summary/Keyword: Oxide(AAO)

Search Result 152, Processing Time 0.029 seconds

Voltage-dependent Fabrication of Anodic Alumina Nanostructures and the Application to Photonic Crystals (전압 변화에 따른 양극 산화알루미나 나노구조의 패턴 형성 및 광결정 응용)

  • Choi, Jae-Ho;Cho, Sung-Nam;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.62-63
    • /
    • 2008
  • Photonic crystas were fabricated using an anodic aluminum oxide(AAO) mask on GaN diode. The Photonic crystal structure has been investigated from Atomic Force Microscope(AFM). The hole diameter and lattice constant of photonic crystal are 60nm and 105nm, respectively. Photoluminescence of photonic crystal was enhanced and optical interference was increased by photonic crystal effect.

  • PDF

Effects of Sealing Time of Anodic Aluminum Oxide (AAO) for Upper Electrode of Etcher

  • Song, Je-Beom;Sin, Jae-Su;Sin, Yong-Hyeon;Gang, Sang-U;Kim, Jin-Tae;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.115-115
    • /
    • 2012
  • 반도체/디스플레이 산업분야의 발전으로 진공 공정 기술력 또한 증진되고 있다. 반도체소자의 초미세화, 진공부품의 대면적화가 진행 되면서 진공 공정 중에 발생하는 오염입자를 제어하는 것이 이슈가 되고 있다. 오염입자는 플라즈마의 물리적인 부식과 활성이 높은 화학반응에 의해 진공부품에서 부식이 진행되어 발생하며, 이는 반도체 및 디스플레이 부품의 신뢰성측면과 수율저하 등 life time의 근본적인 문제점으로 대두되고 있다. 본 연구에서는 반도체/디스플레이 장비용 코팅부품으로 많이 사용되고 있는 Al2O3 코팅막을 이용하였으며, sealing time에 따른 Anodic Aluminum Oxide (AAO) electrode의 물성특성평가 및 진공평가기술을 이용하여 life time을 예측하는 연구를 수행하였다.

  • PDF

Fabrication and Properties of Fe-Ni Nano Thin Film and Wire by Electrodeposition Method (Electrodeposition법에 의한 Fe-Ni 나노박막 및 나노선 제조 및 특성)

  • Koo, Bon-Keup;Shin, Dong-Yul;Jung, Woo-Ram;Jung, Sang-Ok;Kim, Dae-Yong;Choi, Mok-Ryeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.557-558
    • /
    • 2006
  • The mechanical properties of micro-hardness and internal stress of Ni-Fe alloy thin film made by electrodeposition method have been measured as a function of bath composition and current density. And also the microstructure of $200{\AA}$ Ni-Fi nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method have been observed by SEM as a function of ultrasonic treatment time and bath composition.

  • PDF

Fabrication of Ordered Nanoporous Alumina Membrane by PDMS Pre-Patterning

  • Kim, Byeol;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.265.1-265.1
    • /
    • 2013
  • Nanoporous anodic aluminum oxide (AAO), a self-ordered hexagonal array has various applications for nanofabrication such as nanotemplate, and nanostructure. In order to obtain highly-ordered porous alumina membranes, Masuda et al. proposed a two-step anodization process however this process is confined to small domain size and long hours. Recently, alternative methods overcoming limitations of two-step process were used to make prepatterned Al surface. In this work, we confirmed that there is a specific tendency used a PDMS stamp to obtain a pre-patterned Al surface. Using the nanoindentaions of a PDMS stamp as chemical carrier for wet etching, we can easily get ordered nanoporous template without two-step process. This chemical etching method using a PDMS stamp is very simple, fast and inexpensive. We use two types of PDMS stamps that have different intervals (800nm, 1200nm) and change some parameters have influenced the patterning of being anodized, applied voltage, soaking and stamping time. Through these factors, we demonstrated the patterning effect of large scale PDMS stamp.

  • PDF

Electrochemical Deposition of CdSe Nanorods for Photovoltaic Cell (전기도금법을 이용한 태양전지용 CdSe 나노로드 제작)

  • Kim, Seong-Hun;Lee, Jae-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.2
    • /
    • pp.63-67
    • /
    • 2009
  • CdSe is one of the composite semiconductor materials used in hybrid solar cell. CdSe nanorods were fabricated using electrochemical deposition in anodic aluminum oxide (AAO) template. CdSe were deposited from $CdSO_4$ and $H_2SeO_3$ dissolved aqueous solution by direct current electrochemical deposition. Uniformity of CdSe nanorods were dependent on the diameter and the height of holes in AAO. The current density, current mode, bath composition and temperature were controlled to obtained 1:1 atomic composition of CdSe. CdSe electroplating in AAO is bottom-up filling so we applied direct current is better than others for good uniformity of CdSe nanorods. The optimum conditions to obtain 1:1 atomic composition of CdSe nanorods are direct current $10\;mA/cm^2$, 0.25 M $CdSO_4$-5 mM $H_2SeO_3$ electrolytes at room temperature.

Composite Materials with MWCNTs and Conducting Polymer Nanorods and their Application as Supercapacitors

  • Liua, Lichun;Yoo, Sang-Hoon;Park, Sung-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This study demonstrated the synthesis of high-surface-area metal-free carbonaceous electrodes (CE) from anodic aluminum oxide (AAO) templates, and their application as supercapacitors. Multi-walled Carbon nanotubes (MWCNTs) were interwoven into a porous network sheet that was attached to one side of AAO template through a vacuum filtration of the homogeneously dispersed MWCNT toluene solution. Subsequently, the conducting polymer was electrochemically grown into the porous MWCNT network and nanochannels of AAO, leading to the formation of a carbonaceous metal-free film electrode with a high surface area in the given geometrical surface area. Typical conducting polymers such as polypyrrole (PPY) and poly(3,4-ethylenedioxythiophene) (PEDOT) were examined as model systems, and the resulting electrodes were investigated as supercapacitors (SCs). These SCs exhibited stable, high capacitances, with values as high as 554 F/g, 1.08 F/$cm^2$ for PPY and 237 F/g, 0.98 F/$cm^2$ for PEDOT, that were normalized by both the mass and geometric area.

Tribological Influence of Kinematic Oil Viscosity Impregnated in Nanopores of Anodic Aluminum Oxide Film (함침 오일 점도에 따른 나노동공 구조의 산화알루미늄 박막의 마찰 및 마멸 거동)

  • Kim, Dae-Hyun;Ahn, Hyo-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.625-630
    • /
    • 2013
  • The friction behavior of a 60-${\mu}m$-thick anodic aluminum oxide (AAO) film having cylindrical nanopores of 45-nm diameter was investigated as a function of impregnated oil viscosity ranging from 3.4 to 392.6 cSt. Reciprocating ball-on-flat sliding friction tests using a 1-mm-diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 to 1 N in an ambient environment. The friction coefficient significantly decreased with an increase in the oil viscosity. The boundary lubrication film remained effectively under all test conditions when high-viscosity oil was impregnated, whereas it was easily destroyed when low-viscosity oil was impregnated. Thin plastic deformed layer patches were formed on the worn surface with high-viscosity oil without evidence of tribochemical reaction and transfer of counterpart material.

Structural and Electrical Properties of an Electrolyte-insulator-metal Device with Variations in the Surface Area of the Anodic Aluminum Oxide Template for pH Sensors

  • Kim, Yong-Jun;Lee, Sung-Gap;Yeo, Jin-Ho;Jo, Ye-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2364-2367
    • /
    • 2015
  • In this study, we fabricated an electrolyte-insulator-metal (EIM) device incorporating a high-k Al2O3 sensing membrane using a porous anodic aluminum oxide (AAO) through a two-step anodizing process for pH detection. The structural properties were observed by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction patterns (XRD). Electrochemical measurements taken consisted of capacitance-voltage (C-V), hysteresis voltage and drift rates. The average pore diameter and depth of the AAO membrane with a pore-widening time of 20 min were 123nm and 273.5nm, respectively. At a pore-widening time of 20 min, the EIM device using anodic aluminum oxide exhibited a high sensitivity (56mV/pH), hysteresis voltage (6.2mV) and drift rate (0.25mV/pH).

Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells (AAO를 사용한 고분자전해질 연료전지의 공기극 촉매층 구조 제어)

  • Cho, Yoon-Hwan;Cho, Yong-Hun;Jung, Nam-Gee;Ahn, Min-Jeh;Kang, Yun-Sik;Chung, Dong-Young;Lim, Ju-Wan;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • The cathode catalyst layer in polymer electrolyte membrane fuel cells (PEMFCs) was fabricated with anodic aluminum oxide (AAO) template and its structure was characterized with scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The SEM analysis showed that the catalyst layer was fabricated the Pt nanowire with uniform shape and size. The BET analysis showed that the volume of pores in range of 20-100 nm was enhanced by AAO template. The electrochemical properties with the membrane electrode assembly (MEA) were evaluated by current-voltage polarization measurements and electrochemical impedance spectroscopy. The results showed that the MEA with AAO template reduced the mass transfer resistance and improved the cell performance by approximately 25% through controlling the structure of catalyst layer.

Nano SPR Biosensor for Detecting Lung Cancer-Specific Biomarker (폐암 바이오마커 검출용 나노SPR 바이오센서)

  • Jang, Eun-Yoon;Yeom, Se-Hyuk;Eum, Nyeon-Sik;Han, Jung-Hyun;Kim, Hyung-Kyung;Shin, Yong-Beom;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.144-149
    • /
    • 2013
  • In this research, we developed a biosensor to detect lung cancer-specific biomarker using Anodic Aluminum Oxide (AAO) chip based on interference and nano surface plasmon resonance (nanoSPR). The nano-porous AAO chip was fabricated $2{\mu}m$ of pore-depth by two-step anodizing method for surface uniformity. NanoSPR has sensitivity to the refractive index (RI) of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized to the Au-deposited surface of nano-porous AAO chip. To detect the lung cancer-specific biomarker, antibodies were immobilized on the surface of the chip by Self Assembled Monolayer (SAM) method. Since then lung cancer-specific biomarker was applied atop the antibodies immobilized layer. The specific reaction of the antigen-antibody contributed to the change in the refractive index that cause shift of resonance spectrum in the interference pattern. The Limit of Detection (LOD) was 1 fg/ml by using our nano-porous AAO biosensor chip.