DOI QR코드

DOI QR Code

Tribological Influence of Kinematic Oil Viscosity Impregnated in Nanopores of Anodic Aluminum Oxide Film

함침 오일 점도에 따른 나노동공 구조의 산화알루미늄 박막의 마찰 및 마멸 거동

  • Kim, Dae-Hyun (Graduate School of NID Fusion Technology, Seoul Nat'l Univ. of Science and Technology) ;
  • Ahn, Hyo-Sok (MSDE Program, College of Business and Technology, Seoul Nat'l Univ. of Science and Technology)
  • 김대현 (서울과학기술대학교 NID융합기술대학원) ;
  • 안효석 (서울과학기술대학교 기술경영융합대학 MSDE 프로그램)
  • Received : 2012.10.24
  • Accepted : 2013.02.18
  • Published : 2013.05.01

Abstract

The friction behavior of a 60-${\mu}m$-thick anodic aluminum oxide (AAO) film having cylindrical nanopores of 45-nm diameter was investigated as a function of impregnated oil viscosity ranging from 3.4 to 392.6 cSt. Reciprocating ball-on-flat sliding friction tests using a 1-mm-diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 to 1 N in an ambient environment. The friction coefficient significantly decreased with an increase in the oil viscosity. The boundary lubrication film remained effectively under all test conditions when high-viscosity oil was impregnated, whereas it was easily destroyed when low-viscosity oil was impregnated. Thin plastic deformed layer patches were formed on the worn surface with high-viscosity oil without evidence of tribochemical reaction and transfer of counterpart material.

본 연구는 직경 45 nm인 원통형 나노동공을 가진 산화알루미늄(AAO) 박막에 오일을 함침시켰을때 동점도가 마찰 마멸에 미치는 영향을 규명하고자 실시하였다. 양극산화법으로 제조한 AAO 박막을 직경 1 mm의 440C 스테인리스 강구를 상대재로 하여 왕복동 미끄럼 접촉시험을 실시하였다. 마찰면과 마멸입자는 주사전자현미경과 에닥스(Energy-dispersive X-ray)를 이용해 분석하였다. 높은 동점도 오일의 윤활효과가 저점도 오일에 비해 크게 향상되었다. 동점도가 낮은 경우엔 모든 하중조건에서 심한 마찰흔적과 함께 두꺼운 소성변형층이 넓게 형성되었으며 경계윤활막의 손상으로 접촉면에 물질전이와 화학적 반응 현상이 모두 발생하였다. 오일의 점도가 높은 경우 마찰면에 존재하는 경계윤활막이 파괴되지 않아 마찰흔적과 소성변형층의 형성이 매우 적었으며 물질전이와 화학적 반응이 방지되었다.

Keywords

References

  1. Kohli, P., Wirtz, M. and Martin, C. R., 2004, "Nanotube Membrane Based Biosensors," Electroanalysis, Vol. 16, pp. 9-18. https://doi.org/10.1002/elan.200302916
  2. Che, G. L., Lakshmi, B. B., Fisher, E. R. and Martin, C. R., 1998, "Carbon Nanotube Membranes for Electrochemical Energy Storage and Production," Nature, Vol. 393, pp. 346-349. https://doi.org/10.1038/30694
  3. Kim, H. S., Kim, D. H., Lee, W., Cho, S. J., Hahn, J. H. and Ahn, H. S., 2010, "Tribological Properties of Nanoporous Anodic Aluminum Oxide Film," Surf. Coat. Technol., Vol. 205, pp. 1431-1437. https://doi.org/10.1016/j.surfcoat.2010.07.056
  4. Julthongpiput, D., Sidorenko, A., Ahn, H.-S., Kim, D.-I. and Tsukruk, V. V., 2002, "Towards Self-Lubricated Nanocoatings," Tribol. Int., Vol. 35, pp. 829-836. https://doi.org/10.1016/S0301-679X(02)00067-1
  5. Ahn, H.-S., Julthongpiput, D., Kim, D.-I. and Tsukruk, V.V., 2003, "Dramatic Enhancement of Wear Stability in Oil-Enriched Polymer Gel Nanolayers," Wear, Vol. 255, pp. 801-807. https://doi.org/10.1016/S0043-1648(03)00286-2
  6. Kim, H.-S., Kim, D.-H., Hahn, J., Ahn, H.-S., 2011, "Friction Behavior of Oil-Enriched Nanoporous Anodic Aluminum Oxide Film," Journal of the KSTLE, Vol. 27, No. 4, pp. 193-197.
  7. Li, A. P., Muller, F., Birner, A., Nielsch, K. and Gösele, U., 1998, "Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Selfrganization in Anodic Alumina," J. Appl. Phys., Vol. 84, pp. 6023-6026. https://doi.org/10.1063/1.368911