• 제목/요약/키워드: Oxidative species

검색결과 1,320건 처리시간 0.032초

RAW 264.7 세포에서 Heme Oxygenase-1 발현 유도를 통한 송절(松節) 약침액의 항염증 효능 (Pinus Densiflora Gnarl Extract for Pharmacopuncture Inhibits Inflammatory Responses through Heme Oxygenase-1 Induction in Lipopolysaccharide-Stimulated RAW264.7 Macrophages)

  • 이강파;문진영
    • Korean Journal of Acupuncture
    • /
    • 제29권1호
    • /
    • pp.37-46
    • /
    • 2012
  • Objectives : The gnarl of Pinus densiflora, called Songjeol in Korea, has been used as a medicinal herb for the treatment of inflammatory-related diseases such as arthralgia, myalgia and bruise. However, the molecular actions and mechanisms have not been clearly investigated. The aim of this study was to clarify the anti-inflammatory activity of Pinus densiflora gnarl pharmacopuncture (PDGP) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Methods : Cytotoxicity was assessed by XTT assay. The amount of nitric oxide (NO) production was determined by nitrite assay. The mRNA expressions of interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) were analyzed by RT-PCR. Reactive oxidative species (ROS) generation was measured using the fluorescence microscopy. In addition, inducible nitric oxide synthase (iNOS) and redox factor-1 (Ref-1) protein expressions were detected by Western blotting. Results : PDGP inhibited NO production and ROS generation in LPS-stimulated RAW264.7 cells. At the mRNA level, PDGP suppressed IL-$1{\beta}$, IL-6 and COX-2 expression. On the other hand, PDGP induced HO-1 mRNA expression. Furthermore, PDGP suppressed iNOS and Ref-1 protein expression. Conclusions : This result suggests that PDGP can act as a suppressor agent on NO and iNOS through induction of HO-1, and play an useful role in blocking inflammatory responses.

요중 malondialdehyde의 정도와 냉증의 연관성에 대한 후향적 단면연구 (A Retrospective Cross-sectional Study on Correlation between the Level of Malondialdehyde in Urinalysis and Cold Hypersensitivity)

  • 안지윤;김민영;황덕상;이진무;장준복;이경섭;이창훈
    • 대한한방부인과학회지
    • /
    • 제27권3호
    • /
    • pp.116-123
    • /
    • 2014
  • Objectives: This study aims to research correlation of the malondialdehyde level in urinalysis with cold hypersensitivity. Methods: We studied 128 patients visiting ${\bigcirc}{\bigcirc}$ Korean Hospital from March, 2013 to May, 2013. The subjects were categorized into two groups: cold hypersensitivity group (n=46) and control group (n=79). Patients in cold hypersensitivity group had been stressed because of severe cold hypersensitivity. First, We investigated the difference of the level of malondialdehyde between two groups. In addition, temperature of the two points, ST32 and LR3, was measured by using Digital Infrared Thermal Imaging (DITI) to find out whether the extent of cold hypersensitivity is related to the level of malondialdehyde. Results: There is no different characteristics between two groups. The average of malondialdehyde in cold hypersensitivity group ($1613.15{\pm}1260.71$) is significantly higher than in control group ($1170.01{\pm}1015.66$)(p=0.04). But there is no correlation between level of malondialdehyde and the extent of cold hypersensitivity (r=-0.22, p=0.13). Conclusions: Although the level of malondialdehyde in cold hypersensitivity group is higher than in control group, there is no significant correlation between level of malondialdehyde and the extent of cold hypersensitivity.

오리나무 가지 유래 Oregonin의 인체 모유두 세포 Apoptosis 조절 효능 (Modulative Effect of Human Hair Dermal Papilla Cell Apoptosis by Oregonin from the Braches of Alnus japonica)

  • 이경화;박광현;최선은
    • 한국자원식물학회지
    • /
    • 제31권4호
    • /
    • pp.322-329
    • /
    • 2018
  • 최근 식품의약품안전처에서 그동안 의약외품으로 분류되었던 '탈모 증상 완화' 관련 제품이 기능성 화장품의 범주에 포함됨에 따라서 관련 산업계에 큰 관심 중 하나라고 할 수 있다. 본 연구에서는 기존 의약품들의 한계점인 부작용의 위험률이 적으면서 탈모를 과학적으로 조절시켜줄 수 있는 객관적인 근거를 제시할 수 있는 천연물 유래 신소재를 발굴하고자, 오리나무 가지로부터 분리한 oregonin은 강력한 활성산소종 소거능을 가지며 탈모와 연관성이 높은 모유두 세포의 사멸을 명확하게 조절함을 확인하였다. 결론적으로 oregonin을 포함한 오리나무 추출물은 두피에서 발생한 활성산소를 강력하게 제거하는 효능을 기반으로 하여, 산화적 스트레스에 의한 모유두세포의 사멸 억제 및 조절을 통하여 탈모방지 효과를 기대할 수 있는 천연 탈모 방지 및 양모 신소재로서의 개발가능성이 있는 것으로 확인하였다.

보리 품종별 주정 추출물의 항산화 활성 및 간 보호 효과 (Antioxidative and Hepatoprotective Effects of Ethanol Extracts from Different Barley Cultivars)

  • 양지영;함현미;이현진;김현영;우소연;서우덕;이미자
    • 한국식품영양학회지
    • /
    • 제34권5호
    • /
    • pp.423-429
    • /
    • 2021
  • Barley's nutritional value as a health food is increasing due to its excellent nutritional functionality. In this study, the levels of β-glucan, total polyphenols, and total flavonoids were analyzed in the ethanol extracts of different barley cultivars (Hinchalssal, Heuksoojeongchal, Betaone, Ganghochung, and Saechalssal). Also, the free radical scavenging abilities of 2,2-diphenyl-1-picryl-hydrazil (DPPH) and 2,2'-azino-bis-3-ethylbenzo-thiaxoline-6-sulfonic acid (ABTS) were measured to determine their antioxidant activity. The results confirmed that Betaone extract contained highly activefunctional components and exhibitedantioxidant activity. Next, we evaluated the hepatoprotective and inhibitory effects of reactive oxygen species (ROS) generated by barley ethanol extracts after inducing oxidative stress with tert-butyl hydroperoxide (tBHP) in HepG2 cells. Hinchalssal and Saechalssal extracts showed the most significant cytoprotective effect and also reduced ROS production significantly. These results suggest that Hinchalssal, Saechalssal, and Betaone represent potential natural antioxidant and hepatoprotective agents.

구증구포 맥문동 Ethyl acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과 (Antioxidant Activity of Ethyl acetate Fraction of the Guzeunggupo-procossed Platycodon grandiflorum A. De Candolle roots in Caenorhabditis elegans)

  • 권강무;김준형;양재헌;기별희;황인현;김대근
    • 생약학회지
    • /
    • 제52권3호
    • /
    • pp.163-169
    • /
    • 2021
  • Using the Caenorhabditis elegans model system, the antioxidant activity of methanol extract of the guzeunggupoprocessed Liriope platyphylla F. T. Wang (Liliaceae) tuber was calculated. Between the methanol extracts of guzeunggupo-processed and non-processed L. platyphylla tuber, the processed L. platyphylla tuber showed higher DPPH radical scavenging effect than the non-processed one. The ethyl acetate soluble fraction of the methanol extract of the guzeunggupo-processed L. platyphylla tuber showed the best DPPH radical scavenging activity. The ethyl acetate fraction of the processed sample was measured for the activities of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species level. In addition, to verify the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction of the processed sample, SOD-3 expression was measured using a transgenic strain (CF1553). Consequently, the ethyl acetate fraction of the processed sample, increased SOD and catalase activities, and decreased ROS accumulation in a dose-dependent manner. Furthermore, the ethyl acetate fraction of the processed sample-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.

Tat-CIAPIN1 protein prevents against cytokine-induced cytotoxicity in pancreatic RINm5F β-cells

  • Yeo, Hyeon Ji;Shin, Min Jea;Kim, Dae Won;Kwon, Hyeok Yil;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.458-463
    • /
    • 2021
  • Cytokines activate inflammatory signals and are major mediators in progressive β-cell damage, which leads to type 1 diabetes mellitus. We recently showed that the cell-permeable Tat-CIAPIN1 fusion protein inhibits neuronal cell death induced by oxidative stress. However, how the Tat-CIAPIN1 protein affects cytokine-induced β-cell damage has not been investigated yet. Thus, we assessed whether the Tat-CIAPIN1 protein can protect RINm5F β-cells against cytokine-induced cytotoxicity. In cytokine-exposed RINm5F β-cells, the transduced Tat-CIAPIN1 protein elevated cell survivals and reduced reactive oxygen species (ROS) and DNA fragmentation levels. The Tat-CIAPIN1 protein reduced mitogen-activated protein kinases (MAPKs) and NF-κB activation levels and elevated Bcl-2 protein, whereas Bax and cleaved Caspase-3 proteins were decreased by this fusion protein. Thus, the protection of RINm5F β-cells by the Tat-CIAPIN1 protein against cytokine-induced cytotoxicity can suggest that the Tat-CIAPIN1 protein might be used as a therapeutic inhibitor against RINm5F β-cell damage.

백서 모델에서 알파 아마니틴에 의한 간독성에 대한 갯방풍의 보호 효과 (The Effect of Glehnia Littoralis on Alpha-amanitin Induced Hepatotoxicity in a Murine Model)

  • 류창연;선경훈;홍란;박용진
    • 대한임상독성학회지
    • /
    • 제16권2호
    • /
    • pp.108-115
    • /
    • 2018
  • Purpose: Glehnia littoralis has been reported to have several pharmacological properties but no in vivo reports describing the protective effects of this plant on${\alpha}$-amanitin-induced hepatotoxicity have been published. ${\alpha}$-Amanitin is a peptide found in several mushroom species that accounts for the majority of severe mushroom poisonings leading to severe hepatonecrosis. In our previous in vitro study, we found that ${\alpha}$-amanitin induced oxidative stress, which may contribute to its severe hepatotoxicity. The aim of this study was to investigate whether Glehnia littoralis acetate extract (GLEA) has protective antioxidant effects on ${\alpha}$-amanitin-induced hepatotoxicity in a murine model. Methods: Swiss mice (n=40 in all groups) were divided into four groups (n=10/group). Three hours after giving ${\alpha}$-amanitin (0.6 mg/kg, i.p.) to the mice, they were administered silibinin (50 mg/kg/d, i.p.) or Glehnia littoralis ethyl acetate extract (100 mg/kg/d, oral) therapies once a day for 3 days. After 72 hours of treatment, each subject was killed, cardiac blood was aspirated for hepatic aminotransferase measurement, and liver specimens were harvested to evaluate the extent of hepatonecrosis. The degree of hepatonecrosis was assessed by a pathologist blinded to the treatment group and divided into 4 categories according to the grade of hepatonecrosis. Results: GLEA significantly improved the beneficial functional parameters in ${\alpha}$-amanitin-induced hepatotoxicity. In the histopathological evaluation, the toxicity that was generated with ${\alpha}$-amanitin was significantly reduced by GLEA, showing a possible hepatoprotective effect. Conclusion: In this murine model, Glehnia littoralis was effective in limiting hepatic injury after ${\alpha}$-amanitin poisoning. Increases of aminotransferases and degrees of hepatonecrosis were attenuated by this antidotal therapy.

산화방지제 파이토케미컬이 건강에 미치는 영향에 대해 고려할 점 (Considerations for the effects of antioxidant phytochemicals on human health)

  • 김대옥;이창용
    • 한국식품과학회지
    • /
    • 제53권2호
    • /
    • pp.111-114
    • /
    • 2021
  • 과일, 채소, 곡물, 견과류 등에 함유된 파이토케미컬은 심혈관질환, 암, 퇴행성신경질환 등을 유발하는 활성산소의 바람직하지 않은 영향을 방지하는 산화방지제로 역할을 한다. 이처럼 유해물질로 간주되었던 활성산소는 최근에 면역 및 다른 생리적 반응 신호에서 인체에 유익한 역할을 하는 것으로 밝혀졌다. 여러 연구에 따르면 활성산소는 신진대사 건강을 증진시키는 필수 신호 전달 물질로 작용한다. 따라서, 산화방지제가 활성산소의 신호 전달에 간섭하는 것은 전반적인 이점에 의문의 여지가 있다. 그러므로 건강상의 이익을 위해 파이토케미컬을 기능성 식품과 보충제에 적용할 때 활성산소가 미치는 영향을 이해하기 위한 연구가 반드시 필요하다. 본 논문은 활성산소에 관한 연구를 계획하는 식품학자 및 영양학자들에게 가능한 연구 방향을 제공하고자 활성산소의 새로운 역할과 다양한 파이토케미컬의 호메시스를 간략하게 다루고 있다.

Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR-1-NKCC1 signaling in dorsal raphe nucleus of rats

  • Yang, Hye Jin;Kim, Mi Jung;Kim, Sung Soo;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.449-457
    • /
    • 2021
  • The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin's wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride co-transporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.

Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism

  • Ju, Sunghee;Seo, Ji Yeon;Lee, Seung Kwon;Oh, Jisun;Kim, Jong-Sang
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.108-118
    • /
    • 2021
  • Background: Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be metabolized to a biologically active substance, compound K. Previous research showed that compound K could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable level of compound K has cognitive improving and neuroprotective effects. Methods: A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains were collected, histologically examined (hematoxylin and eosin staining), and the expressions of antioxidant proteins analyzed by western blot. Results: Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg body weight reversed scopolamine-induced learning and memory deficits. Histological examination demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hippocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity by decreasing the intracellular levels of reactive oxygen species. Conclusion: These findings suggest that HRGE administration can effectively alleviate hippocampus-mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.