• 제목/요약/키워드: Oxidative species

검색결과 1,320건 처리시간 0.024초

Suppression of TNF-alpha-induced MMP-9 expression by a cell-permeable superoxide dismutase in keratinocytes

  • Song, Ha-Yong;Ju, Sung-Mi;Goh, Ah-Ra;Kwon, Dong-Joo;Choi, Soo-Young;Park, Jin-Seu
    • BMB Reports
    • /
    • 제44권7호
    • /
    • pp.462-467
    • /
    • 2011
  • Up-regulation of selected matrix metalloproteinases (MMPs) such as MMP-9 contributes to inflammatory processes during the development of various skin diseases, such as atopic dermatitis. In this study, we examined the effect of a cell-permeable superoxide dismutase (Tat-SOD) on TNF-${\alpha}$-induced MMP-9 expression in human keratinocyte cells (HaCaT). When Tat-SOD was added to the culture medium of HaCaT cells, it rapidly entered the cells in dose- and time-dependent manners. Tat-SOD decreased TNF-${\alpha}$-induced reactive oxygen species (ROS) generation. Tat-SOD also inhibited TNF-${\alpha}$-induced NF-${\kappa}B$ DNA binding activity. Treatment of HaCaT cells with Tat-SOD significantly inhibited TNF-${\alpha}$-induced mRNA and protein expression of MMP-9, as measured by RT-PCR and Western blot analysis. In addition, Tat-SOD suppressed TNF-${\alpha}$-induced gelatinolytic activity of MMP-9. Taken together, our results indicate that Tat-SOD can suppress TNF-${\alpha}$-induced MMP-9 expression via ROS-NF-${\kappa}B$-dependent mechanisms in keratinocytes, and therefore can be used as an immunomodulatory agent against inflammatory skin diseases related to oxidative stress.

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Transgenic Strategy to Improve Stress Resistance of Crop Plants

  • Horvath, Gabor V.;Oberschall, Attila;Deak, Maria;Sass, Laszlo;Vass, Imre;Barna, Balazs;Kiraly, Zoltan;Hideg, Eva;Feher, Attila
    • Journal of Plant Biotechnology
    • /
    • 제1권1호
    • /
    • pp.61-68
    • /
    • 1999
  • Rapid accumulation of reactive oxygen species (ROS) and their toxic reaction products with lipids and proteins significantly contributes to the damage of crop plants under biotic and abiotic stresses. We have identified several stress activated alfalfa genes, including the gene of the alfalfa ferritin and a novel NADPH-dependent aldose/aldehyde reductase enzyme. Transgenic tobacco plants that synthesize alfalfa ferritin in vegetative tissues-either in its processed form in chloroplast or in the cytoplasmic non-processed form-retained photosynthetic function upon free radical toxicity generated by paraquat treatment and exhibited tolerance to necrotic damage caused by viral and fungal infections. We propose that by sequestering intracellular iron involved in generation of the very reactive hydroxyl radicals through a Fenton reaction, ferritin protects plant cells from oxidative damage. Our preliminary results with the other stress-inducable alfalfa gene (a NADPH-dependent aldo-keto reductase) indicate, that the encoded enzyme may play role in the stress response of the plant cells. These studies reveal new pathways in plants that can contribute to the increased stress resistance with a potential use in crop improvement.

  • PDF

The Role of Caveolin-1 in Senescence and Ototoxicity of Differentiated Cochlear Hair Cell Line (UB/OC-1)

  • Jung, Yoon-Gun;Kim, Kyu-Sung;Hwang, In-Kug;Jang, Tae-Young;Kim, Young-Mo;Choi, Ho-Seok
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.133-140
    • /
    • 2009
  • Caveolin may be a molecular target for modulation of aging process in cochlear hair cells and have association with oxotoxicity. First we investigated the basal expression of caveolin-1, caveolin-2, caveolin-3, nitric oxide synthase, and superoxide dismutase in UB/OC-1 cochlear hair cell line. By using a RNA interference technique, we investigated whether down-regulation of caveolin influenced telomerase activity and reactive oxygen species (ROS) production in cochlear hair cells. In addition, cisplatin and gentamycin, known ototoxic drugs, were administered to the cochlear cells to determine their impact on caveolin expression. Further attempts at elucidating cellular aging mechanism with caveolin and ototoxic drugs were carried out. The main discoveries were the presence of caveolin-1 in UB/OC-1 cells and that down-regulation of caveolin-1 reduced protein kinase A activity. Telomerase was activated by caveolin down-regulation and caveolin down-regulation inhibited oxidative stress at the mitochondrial level. When cisplatin and gentamycin were administered to the cochlear hair cells during a caveolin expression state, a decrease in telomerase activity and increase ROS activity was observed. Caveolin-1 may modulate the senescent mechanisms in cochlear cells. An increase in caveolin-1 levels can lead to ROS production in the mitochondria which may cause ototoxicity.

Molecular Changes in Remote Tissues Induced by Electro-Acupuncture Stimulation at Acupoint ST36

  • Rho, Sam-Woong;Choi, Gi-Soon;Ko, Eun-Jung;Kim, Sun-Kwang;Lee, Young-Seop;Lee, Hye-Jung;Hong, Moo-Chang;Shin, Min-Kyu;Min, Byung-Il;Kee, Hyun-Jung;Lee, Cheol-Koo;Bae, Hyun-Su
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.178-183
    • /
    • 2008
  • To investigate the effects of electro-acupuncture (EA) treatment on regions remote from the application, we measured cellular, enzymatic, and transcriptional activities in various internal tissues of healthy rats. The EA was applied to the well-identified acupoint ST36 of the leg. After application, we measured the activity of natural killer cells in the spleen, gene expression in the hypothalamus, and the activities of antioxidative enzymes in the hypothalamus, liver and red blood cells. The EA treatment increased natural killer cell activity in the spleen by approximately 44%. It also induced genes related to pain, including 5-Hydroxytryptamine (serotonin) receptor 3a (Htr3a) and Endothelin receptor type B (Ednrb) in the hypothalamus, and increased the activity of superoxide dismutase in the hypothalamus, liver, and red blood cells. These findings indicate that EA mediates its effects through changes in cellular activity, gene expression, and enzymatic activity in multiple remote tissues. The sum of these alterations may explain the beneficial effects of EA.

Expression of Cytoplasmic 8-oxo-Gsn and MTH1 Correlates with Pathological Grading in Human Gastric Cancer

  • Song, Wen-Jie;Jiang, Ping;Cai, Jian-Ping;Zheng, Zhi-Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6335-6338
    • /
    • 2015
  • Background: Cancers have dysfunctional redox regulation resulting in production of reactive oxygen species (ROS), damaging DNA, RNA and free NTPs, and causing the accumulation of oxidative nucleic acids in cytoplasm. The major types are 8-oxo-7,8-dihydroguanine(8-oxoGsn) in RNA and 8-oxo-7,8-dihydro-2' deoxyguanosine(8-oxodGsn) in Mt-DNA. The MTH1 protein sanitizes oxidized nucleotide pools from NTPs to monophosphates, preventing the occurrence of transversion mutations. This study concerned cytoplasmic 8-oxodGsn/Gsn and MTH1 expression in gastric cancer and para-cancer tissues and elucidated roles of nucleic-acid oxidation and anti-oxidation. Materials and Methods: A polymer HRP detection system was used to detect 8-oxo-Gsn/dGsn and MTH1 expression in 51 gastric cancer and para-cancer tissue samples. Analyses of patient clinical and pathological data were also performed. Results: The expression of MTH1 and the 8-oxo-dGsn/Gsn ratio were significantly higher in cancer tissues than para-cancer tissues (P<0.05). Cytoplasmic 8-oxo-Gsn and MTH1 were both found to positively correlate (P<0.05) with tumor differentiation, while no significant associations were found with gender, age, invasion depth, lymph node metastasis and clinical stage (P>0.05). Conclusions: We found 8-oxo-dGsn/Gsn and MTH1 are both highly expressed in gastric cancer tissues, especially in well differentiated lesions. In addition, oxidated mtDNA is prevalently expressed in gastric cancers, while 8-oxo-Gsn expression in cytoplasmic RNA is a bit lower, but more selectively.

Antioxidative Properties of Brown Algae Polyphenolics and Their Perspectives as Chemopreventive Agents Against Vascular Risk Factors

  • Kang, Keejung;Park, Yongju;Hwang, Hye-Jeong;Kim, Seong-Ho;Lee, Jeong-Gu;Shin, Hyeon-Cheol
    • Archives of Pharmacal Research
    • /
    • 제26권4호
    • /
    • pp.286-293
    • /
    • 2003
  • Several polyphenolic compounds and complex mixtures were isolated from brown algae species. The 1,1-diphenyl-2-picryhydarzyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) of these compounds were evaluated to determine their physiological usefulness as antioxidants for vascular protection. The antioxidative protection of low-density lipoprotein (LDL) was also evaluated and compared with that of catechin, because the generation of oxidized LDL is one of the most active and specific risk factors contributing to atherogenesis. Oral administration to rats of a commercially available sample ($VNP^{TM}$) containing 30% of these polyphenolic compounds and 70% dietary fiber revealed that the serum reducing capacity measured in terms of FRAP value was significantly elevated 30 min after the treatment, but declined rather quickly thereafter, indicating the good oral absorption of the compounds and their fast binding to the lumenal surface of the blood vessels. An eight-week, human, clinical trial (n=31) of $VNP^{TM}$ showed significant improvement in erectile function measured by IIEF (international index of erectile function) score. These results collectively demonstrated the usefulness of these polyphenolic compounds as fundamental chemopreventive agents against vascular risk factors originating from oxidative stress.

Activity of Antioxidant Enzymes during Senescence in Rice Seedlings

  • Lee, Cheol-Ho;Lee, Shin-Woo;Chun, Hyun-Sik;Moon, Byoung-Yong;Lee, Byeong-Seok;Koo, Jeung-Suk;Lee, Chin-Bum
    • 한국작물학회지
    • /
    • 제49권1호
    • /
    • pp.12-18
    • /
    • 2004
  • Activity of senescence-induced antioxidant enzymes in the detached rice seedlings (Oryza sativa L. cv. Dongjin) was examined. The levels of $\textrm{H}_2\textrm{O}_2$ content and peroxidase (POD) activity were gradually increased during leaf senescence, whereas catalase activity was decreased. The activity of superoxide dismutase (SOD) was increased, and ascorbate peroxidase (APX) and glutathione reductase (GR) were slightly increased until 3d and 4d of dark induced-senescence, and thereafter were decreased. The activation of all SOD isoforms showed a significant decrease after 6d and 7d. After 4d to 7d of dark senescence, there was a significant effect in enhancing the activity of APX-12 and -13 isoforms as compared with light, despite similar levels in total APX activity. GR-8 and -10 isoforms were more effective in leaf senescence at 4d to 7d, particularly with respect to dark-induced senescence. These results suggest that the metabolism of active oxygen species such as $\textrm{H}_2\textrm{O}_2$ is dependent on various functionally interrelated antioxidant enzymes such as catalase, peroxidase, SOD, APX and GR.

식물 세포막의 지방산 조성에 미치는 고강도 청색광선의 효과 (Blue Light Effect on the Fatty Acid Composition of Membrane Lipid of Plant Leaves)

  • 정보경;김창숙;정진
    • 한국환경농학회지
    • /
    • 제11권3호
    • /
    • pp.261-268
    • /
    • 1992
  • 식물 세포의 미토콘드리아와 엽록체는 광 증감제로 작용할 가능성이 있는 여러 가지 색소들을 함유하고 있다. 이들 색소들은 대부분이 막에 결합되어있으며 청색광 영역에서 강한 흡수대를 가지므로 청색광하에서 노출된 이들 소기관에서는 활성산소가 발생되어 막의 구조적, 기능적 피해를 유발하는 요인이 된다. 활성산소의 광발생에 따른 막구조의 변화는 일차적으로 막지질 지방산성분의 산화적 파괴에 기인할 것이다. 본 연구에서는 식물이 고광도의 가시광선(특히 청색광선)하에서 일어나는 막지질 지방산의 산화적 파괴에 지방산 대신 상대적으로 둔감한 포화 지방산의 조성비를 높일 것이라고 가정하고, 이를 뒷받침할만한 실험결과를 얻었다. 즉, 광질이 서로 다른 가시광선 처리조건하에서 생장중인 식물 및 그 소기관들을 대상으로 막지질의 과산화, 지방산조성 및 불포화도, 막결합 단백질의 활성 등을 측정하고 이를 제시하였다.

  • PDF

정지환(定志丸)의 기억 및 인지기능 향상에 대한 효능 연구 (Therapeutic Potential of Jeongjihwan for the Prevention and Treatment of Amnesia)

  • 정태영;정원춘;박종현
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.37-47
    • /
    • 2011
  • This study was aimed to investigate the memory enhancing effect of Jeongjihwan against scopolamine-induced amnesia in C57BL/6 mice. To determine the effect of Jeongjihwan on the memory and cognitive function, we have injected scopolamine (1 mg/kg, i.p.) into C57BL/6 mice 30 min before beginning of behavior tests. We have conducted Y-maze, Morris water-maze, passive avoidance and fear conditioning tests to compare learning and memory functions. Scopolamine-induced behavior changes of memory impairment were significantly restored by oral administration of Jeongjihwan (100 or 200 mg/kg/day). To elucidate the molecular mechanism underlying the memory enhancing effect of Jeongjihwan, we have examined the antioxidant defense system and neurotrophic factors. Jeongjihwan treatment attenuated intracellular accumulation of reactive oxygen species and up-regulated mRNA and protein expression of antioxidant enzymes as assessed by RT-PCR and western blot analysis, respectively. Jeongjihwan also increased protein levels of brain-derived neurotrophic factor (BDNF) compared with those in the scopolamine-treated group. Furthermore, as an upstream regulator, the activation of cAMP response element-binding protein (CREB) via phosphorylation was assessed by Western blot analysis. Jeongjihwan elevated the phosphorylation of CREB (p-CREB), which seemed to be mediated partly by extracellular signal-regulated kinase1/2 (ERK1/2) and protein kinase B/Akt. These findings suggest that Jeongjihwan may have preventive and therapeutic potential in the management of amnesia.