• 제목/요약/키워드: Oxidative species

검색결과 1,325건 처리시간 0.034초

눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용 (Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes)

  • 김다혜;황보현;이혜숙;정재훈;최영현
    • 생명과학회지
    • /
    • 제32권9호
    • /
    • pp.712-720
    • /
    • 2022
  • 비록 PM2.5 노출과 다양한 안구 표면 질환과 관련성이 많은 선행 연구에서 알려졌지만, PM2.5 가 각막에 미치는 세포 독성에 대한 연구는 거의 수행되지 않았다. 본 연구의 목적은 PM에 의한 각막 상피세포의 유해성을 평가하기 위한 in vitro 모델로서 쥐의 각막유래 상피세포(primary rat corneal epithelial cells, RCE cells)의 효능을 조사하는 것이다. 이를 위하여 쥐의 눈에서 분리한 1차 배양 세포가 각막 상피세포임을 pan-cytokeratin 염색을 통하여 확인하였으며, PM2.처리에 의한 각막 상피세포의 형태학적 변화를 동반한 생존율의 억제는 세포사멸 유도와 관련이 있었다. 또한 PM2.가 처리된 각막 상피세포에서는 ROS의 생성이 증가되었으며, 이는 미토콘드리아 기능 장애와 연관성이 있었다. 이와 함께 PM2.는 각막 상피세포에서 NO, TNF-α, IL-1β 및 IL-6를 포함한 염증 매개인자 및 사이토카인의 생성을 증가시켰다. 아울러 heatmap 분석을 통해 BLNK, IL-1RA, Itga2b, ABCb1a 및 Ptgs2가 미세먼지 유도 안구 질환의 임상 치료를 위한 잠재적인 표적 유전자로서 제시하였다. 결론적으로 본 연구의 결과는 1차 쥐의 각막 상피세포가 PM2.에 의한 각막 상피세포 병리기전 연구에 유용한 모델일 수 있으며, 산화적 및 염증성 반응이 PM2.유발 안구 표면 장애 유도에 핵심적인 역할을 함을 알 수 있었다.

더덕순 에탄올 추출물의 신경세포 보호 효과 (Neuroprotective effect of Deodeok (Codonopsis lanceolata) bud extracts in H2O2-stimulated SH-SY5Y cells)

  • 양희선;황인국;최애진;최정숙
    • Journal of Nutrition and Health
    • /
    • 제56권2호
    • /
    • pp.140-154
    • /
    • 2023
  • 본 연구에서는 15-20 cm 길이의 더덕순을 70% 에탄올로 추출하여 추출물 (CLBE)을 제조하고, H2O2로 산화적 스트레스를 유발한 SH-SY5Y세포에 전처리하여 신경세포 보호 효과를 평가하였다. 그 결과, CLBE는 H2O2로 자극된 세포에서 세포 손상 및 LDH 방출 억제, ROS 소거를 통하여 세포의 사멸을 막아주었다. 또한 CLBE는 Bcl-2와 Bax 단백질의 발현을 조절함으로써 caspase의 활성을 억제하여 신경세포를 보호하였다. 이상의 연구결과들을 종합할 때, CLBE는 산화적 스트레스에 대하여 신경세포 보호 효과가 있는 것으로 보이며, 향후 신경질환 연구를 위한 치료제 개발 및 고부가가치 식품 소재 개발에 유용하게 사용될 수 있을 것으로 판단된다.

대황과 실리마린의 병용투여의 간섬유화 보호 효과 (Liver Protective Effect of the Co-treatment of Rhei Radix et Rhizoma and Silymarin on TAA-induced Liver Injury)

  • 정일하;지상우;노성수
    • 대한한방내과학회지
    • /
    • 제44권3호
    • /
    • pp.402-417
    • /
    • 2023
  • Objective: Liver fibrosis is a highly conserved wound-healing response and the final common pathway of chronic inflammatory injury. This study aimed to evaluate the potential anti-fibrotic effect of the combination of Rhei Radix et Rhizoma water extract (RW) and silymarin in a thioacetamide (TAA)-induced liver fibrosis model. Methods: The liver fibrosis mouse model was established through the intraperitoneal injection of TAA (1 week 100 mg/kg, 2-3 weeks 200 mg/kg, 4-8 weeks 400 mg/kg) three times per week for eight weeks. Animal experiments were conducted in five groups; Normal, Control (TAA-induced liver fibrosis mice), Sily (silymarin 50 mg/kg), RSL (RW 50 mg/kg+silymarin 50 mg/kg), and RSH (RW 100 mg/kg+silymarin 50 mg/kg). Biochemical analyses were measured in serum, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), and ammonia levels. Liver inflammatory cytokines and fibrous biomarkers were measured by Western blot analysis, and liver histopathology was evaluated through tissue staining. Results: A significant decrease in the liver function markers AST and ALT and a reduction in ammonia and total bilirubin were observed in the group treated with RSL and RSH. Measurement of reactive oxygen species and MDA revealed a significant decrease in the RSL and RSH administration group compared to the TAA induction group. The expression of extracellular matrix-related proteins, such as transforming growth factor β1, α-smooth muscle actin, and collagen type I alpha 1, was likewise significantly decreased. All drug-administered groups had increased matrix metalloproteinase-9 but a decreasing tissue inhibitor of matrix metalloproteinase-1. RSL and RSH exerted a significant upregulation of NADPH oxidase 2, p22phox, and p47phox, which are oxidative stress-related factors. Furthermore, pro-inflammatory proteins such as cyclooxygenase 2 and interleukin-1β were markedly suppressed through the inhibition of nuclear factor kappa B activation. Conclusions: The administration of RW and silymarin suppressed the NADPH oxidase factor protein level and showed a tendency to reduce inflammation-related enzymes. These results suggest that the combined administration of RW and silymarin improves acute liver injury induced by TAA.

Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways

  • Hyo Lim Lee;Jong Min Kim;Min Ji Go;Seung Gyum Joo;Tae Yoon Kim;Han Su Lee;Ju Hui Kim;Jin-Sung Son;Ho Jin Heo
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.606-621
    • /
    • 2024
  • This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.

Antioxidant Properties of Tannic Acid and its Inhibitory Effects on Paraquat-Induced Oxidative Stress in Mice

  • Choi, Je-Min;Han, Jin;Yoon, Byoung-Seok;Chung, Jae-Hwan;Shin, Dong-Bum;Lee, Sang-Kyou;Hwang, Jae-Kwan;Ryang, Ryung
    • Food Science and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.728-734
    • /
    • 2006
  • The tannins represent a highly heterogeneous group of water-soluble plant polyphenols that may play an important role in antimutagenic and antioxidant properties. We investigated the antioxidant function of tannic acid in comparison to other phenolic compounds including catechin, chlorogenic acid, cinnamic acid, ellagic acid, and gallic acid for their ability to scavenge several stable radicals and reactive oxygen species (ROS) such as ${\bullet}DPPH^+$, ${\bullet}ABTS^+$, hydrogen peroxide, hydroxyl radical, and superoxide radical. The ability of tannic acid to decrease paraquat-induced lipid oxidation in mouse liver and lung through its antioxidant properties was also assessed. The results showed that almost all the tested compounds have stable radical scavenging activity except cinnamic acid. Tannic acid, gallic acid, and ellagic acid demonstrated remarkable ROS scavenging properties toward $H_2O_2$, ${\bullet}OH^-$, ${\bullet}O_2^-$ and especially only tannic acid could inhibit paraquat-induced lipid peroxidation effectively in mouse liver and lung. Based on these results, it appears that increased number of galloyl and ortho-hydroxyl groups enhances the antioxidant activity of phenolic compounds and tannic acid is evaluated as the most effective antioxidant among all the tested compounds. These results suggest that the tannins, especially tannic acid, can be used as therapeutic agent for various diseases caused by ROS.

Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid

  • Lee, Seung-Jin;Mun, Gyeong-In;An, Sang-Mi;Boo, Yong-Chool
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.561-567
    • /
    • 2009
  • Although many plant-derived phenolic compounds display antioxidant effects in biological systems, their mechanism of action remains controversial. In this study, the mechanism by which p-coumaric acid (p-CA) performs its antioxidant action was investigated in bovine aortic endothelial cells under oxidative stress due to high levels of glucose (HG) and arachidonic acid (AA), a free fatty acid. p-CA prevented lipid peroxidation and cell death due to HG+AA without affecting the production of reactive oxygen species. The antioxidant effect of p-CA was not decreased by buthionine-(S,R)-sulfoximine, an inhibitor of cellular GSH synthesis. In contrast, pretreatment with p-CA caused the induction of peroxidases that decomposed t-butyl hydroperoxide in a p-CA-dependent manner. Furthermore, the antioxidant effect of p-CA was significantly mitigated by methimazole, which was shown to inhibit the catalytic activity of 'p-CA peroxidases' in vitro. Therefore, it is suggested that the induction of these previously unidentified 'p-CA peroxidases' is responsible for the antioxidant effect of p-CA.

Comet Assay as a New DNA-Level Approach for Aquatic Ecosystem Health Assessments

  • Sung, Min-Sun;Lee, Sang-Jae;Lee, Jae-Hoon;Park, Sun-Young;Ly, Sun-Yung;An, Kwang-Guk
    • 생태와환경
    • /
    • 제41권4호
    • /
    • pp.466-471
    • /
    • 2008
  • Little is known about DNA-level and physiological levels for health assessments of stream or river environments. Recently, comet assay, so called Single Cell Gel Electrophoresis (SCGE) is introduced for assessments of DNA damage in the medical science, food science and mammal toxicology. The comet assay is known as a biomarker which is one of the best barometers in assessing the DNA damage by oxidative stress. In this study, we conducted the comet assay using sentinel species, Zacco platypus, as one of the pre-warning alarm systems for the aquatic ecosystem health assessments and also applied it to Gap Stream as a model system. Tail extent moments in the S1 and S2 were 5.20 and 9.90 respectively and the moment was 19.89 in the S3. Statistical ANOVA in the tail moments showed a significant difference (n=75, p<0.05) between S1 and S3. Also, the proportions of DNA in the tail were 14.47, 23.64, and $30.04{\mu}m$ in the upstream (control site), midstream, downstream sites, respectively. Our results in the downstream were accord with previous studies of individual-level, population-level, and community-level in Gap Stream. Our results suggest that the comet assay may be used as an important tool for diagnosing ecological health of aquatic ecosystems in the level of DNA.

Studies on the Apoptosis-Inducing Effect of Ulmi Pumilae Cortex on Human Leukemia HL-60 Cells

  • Rhyu Jun Ki;Yu Bong Seon;Jeong Jae Eun;Bak Jin Yeong;Son In Hwan;Lee Ju Seok;Jeon Byeong Hun;Mun Byung Soon
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.900-907
    • /
    • 2004
  • The antiproliferative effect of the water extract of the branch and root bark of Ulmi Pumilae Cortex(WEUPC) was investigated on the p53-negative human leukemia cell line (HL-60). A dose- and time-dependent inhibition of cell growth was observed; this effect appears to be due to induction of apoptosis. Involvement of oxidative stress is indicated by a dose-dependent increase in intracellular reactive oxygen species levels. In addition. anti-apoptic effect was observed in the cells simultaneously treated with WEUPC and the anti-oxidant N-acetylcysteine. WEUPC did not affect the anti-apoptotic Bcl-2 and the pro-apoptotic Bax, whereas p21/sup WAF1/CIPl/ was enhanced in a dose- and time-dependent fashion; this effect was partially inhibited by N-acetylcysteine. The increase in p21/sup WAF1/CIPl/ was accompanied by a parallel accumulation of cells in the G1 phase of the cycle. These results suggest that the p53-independent induction of p21/sup WAF1/CIP/ and the induction of apoptosis may mediate the anti proliferative effect of WEUPC at least in this study; on the basis of this observation, WEUPC could be proposed as an useful adjunct to the treatment of p53-deficient tumors, which are often refractory to standard chemotherapy.

Effect of Snake Venom Toxin on Inhibition of Colorectal Cancer HT29 Cells Growth via Death Receptors Mediated Apoptosis

  • Shim, Yoon Seop;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제31권2호
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives : We investigated whether snake venom toxin(SVT) from Vipera lebetina turanica sensitizes HT29 human epithelial colorectal cancer cells to tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) induced apoptosis in cancer cells. Methods : Cell viability assay was used to assess the inhibitory effect of TRAIL on cell growth of HT29 human colorectal cancer cells. And 6-diamidino-2-phenylindole(DAPI), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay(TUNEL) staining assay were used to evaluate cell-apoptosis. Western blot analysis were conducted to observe apoptosis related proteins and death receptor. To assess whether the synergized inhibitory effect of SVT and TRAIL on reactive oxygen species(ROS) generation was reversed by strong anti-oxidative agent. Results : SVT with TRAIL inhibited HT29 cell growth different from TRAIL alone. Consistent with cell growth inhibition, the expression of TRAIL receptors; Expression of death receptor(DR)4 and DR5 was significantly increased and intrinsic pro-apoptotic cleaved caspase-3, -9 was subsequently increased together with increase of Bax/Bcl-2 ratio and extrinsic pro-apototic caspase-8 was also activated. In addition, the expression of anti-apoptotic survival proteins, a marker of TRAIL resistance(eg, cFLIP, survivin, X-linked inhibitor of apoptosis protein(XIAP) and Bcl-2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the ROS scavenger N-acetylcysteine abolished the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the intrinsic pro-apoptotic caspase-3 and-9. Conclusion : The collective results suggest that SVT facilitates TRAIL-induced apoptosis in $HT_{29}$ human epithelial colorectal cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 and consecutive induction of bilateral apoptosis via regulating apoptosis related proteins.

민속식물의 항균활성 및 산화적 스트레스 개선 효과 (Antimicrobial Activities and Free Radical Scavenging Effect of Korean Folk Plants)

  • 최정란;이동구;구자정;이상용;김현지;박광우;조은주;이상현
    • 생약학회지
    • /
    • 제44권2호
    • /
    • pp.193-199
    • /
    • 2013
  • We investigated the antioxidative and antimicrobial activities of the methanol extracts from Korean folk plants (MKs) in Chungcheong Province. Among 30 MKs, 16 plants at $100{\mu}g/ml$ showed over 90% scavenging activity of 1,1-diphenyl-2-picrylhydrazy (DPPH) and 30 plants exerted the hydroxyl radical scavenging effect over 55%. Fourteen plants at the concentration $50{\mu}g/30{\mu}l$ showed strong microbial inhibition activity against Escherichia coli and Staphylococcus aureus, with clear zone greater than 11 mm in disc assays. Furthermore, the protective effect against anti-inflammatory system using RAW 264.7 macrophage cell was also studied. The treatment of LPS & INF-${\gamma}$ to RAW 264.7 cell induced nitric oxide (NO), however inhibit the formation of NO less than 50% of 5 plants. The present result indicates that the 30 species of MKs exerts protective effect of oxidative stress, antimicrobial activities and anti-inflammatory. In particular, Rhus javanica and Cornus controversa showed stronger effect on not only radical scavenging activity and inhibits growth of S. aureus but also highest protective effects from inflammation.