• Title/Summary/Keyword: Oxidative reaction

Search Result 462, Processing Time 0.026 seconds

Reaction Conditions for Laccase Catalyzed Degradation of Bisphenol A

  • Kim, Young-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.79-83
    • /
    • 2004
  • The oxidative degradation of BPA with laccase from Trametes versiclor was conducted in a closed, temperature controlled system containing acetate buffer for pH control. The effects of medium pH, buffer concentration, temperature and mediator on degradation of BPA were investigated. The inactivation of the enzyme by temperature and reaction product was also studied. The optimal pH for BPA degradation showed about 5. Buffer concentration did not affect BPA degradation. On the other hand, the enzyme stability was higher at low concentration buffer(25 mM). Temperature rise increased the degradation rate of BPA up to 45$^{\circ}C$. The valuable mediator of laccase for BPA was ABTS. Elevated temperature and reaction product irreversibly inactivated the enzyme.

Laccase-Catalyzed Transformation of Chlorophene (Laccase를 이용한 Chlorophene 산화전이에 관한 연구)

  • Kim, Jong-Oh;Kim, Young-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.63-67
    • /
    • 2007
  • Laccase catalyzes the oxidation and polymerization of aromatic compounds in the presence of molecular oxygen. The oxidative transformation of chlorophene with laccase was conducted in a closed, temperature controlled system. The optimal pH for transformation of chlorophene was proven to be about 5-6. As the temperature rose up to $55^{\circ}C$, the transformation of chlorophene increased. The chlorophene transformation was not enhanced in the presence of soluble polymers. The toxicity of the reaction mixture was increased two times than that of initial reaction mixture after the enzymatic treatment. ABTS has enhanced chlorophene transformation at 0.1 mM and showed negative linear relationship with residual chlorophene by the reaction.

Graphene Based Cu Oxide Nanocomposites for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.138.2-138.2
    • /
    • 2013
  • Copper oxide is a multi-functional material being used in various research areas including catalysis, electrochemical materials, oxidizing agents etc. Among these areas, we have synthesized and utilized graphene based copper oxide nanocomposites (CuOx/Graphene) for the catalytic applications (C-N cross coupling reaction). Briefly, Cu precursors were anchored on the graphite oxide(GO) sheets being exfoliated and oxidized from graphite powder. Two different crystalline structures of Cu2O and CuO on graphene and GO were prepared by annealing them in Ar and O2 environments, respectively. The morphological and electronic structures were systemically investigated using FT-IR, XRD, XPS, XAFS, and TEM. Here, we demonstrate that the catalytic performance was found to depend on oxidative states and morphological structures of CuOx graphene nanocomposites. The relationship between the structure of copper oxides and catalytic efficiency toward C-N cross coupling reaction will be discussed.

  • PDF

Current Studies on Browning Reaction Products and Acidic Polysaccharide in Korean Red Ginseng (홍삼에 함유된 갈변물질 및 산성다당체에 대한 연구현황)

  • Lee, Jong-Won;Do, Jae-Ho
    • Journal of Ginseng Research
    • /
    • v.30 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • In the browning reaction of Korean ginseng, it appears that enzymatic and non-enzymatic browning reaction occurred In initial stage of steaming fresh ginseng at low temperature, and then non-enzymatic browning reaction followed in the drying period after steaming. Browning reaction of red ginseng occurred between $60{\sim}90$ min of steaming at $100^{\circ}C$, and browning pigments of red ginseng were mostly water soluble substances. The structural characteristics of water soluble browning reaction products(WS-BRPs) isolated from Korean red ginseng were showed the presence of hydroxyl, amide carbonyl and aliphatic methane groups. From sugar analysis it was identified that L and S-1, melanoidins isolated from red ginseng, contained two kinds of sugars, glucose and xylose, and the other melanoidin S-2 contained the previous and fructose. In order to find out pertinent methods for the acceleration of browning during ginseng processing, various treatment were made on fresh ginseng with sugars, amino acids and inorganic nitrogenous compounds and the extent of browning was measured. Among sugar tested, maltose resulted in the greatest acceleration of browning followed in decreasing order by glucose and lactose, whereas pentoses, fructose, sucrose and raffinose had negligible effect. A marked browning occurred in ginseng treated with basic amino acids, while the extent of browning was not greatly increased when ginseng was treated with aliphatic amino acids, hydroxyl amino acids, or acidic amino acids. The brown color intensity gradually increased with an increase of glucose concentration far up to 0.5M. L, S-1, and S-2 were found to have an ability to donate hydrogen to DPPH, and also they had anti-oxidative activity in the experiments of hydrogen peroxide scavenging, inhibitory activity in the formation of MDA from linoleic acid, auto oxidation of ok-brain homogenates, lipid peroxidation by the enzymatic and non-enzymatic system in liver microsome fraction, and mitochondrial fraction etc. The amounts of acidic polysaccharide(AP) in red ginseng were higher than those of wild and cultured Panax quinquefolius, Panax notoginseng as well as white ginseng (Panax ginseng). In white ginseng, the AP amount is no difference in root ages or sizes, also, the AP amount of ginseng body was similar to that of rhizome, but was higher than that of leaf and epidermis. Addition of red ginseng acidic polysaccharide(RGAP) increased production of nitric oxide(NO) and tumor necrosis factor (TNF)-$\alpha$ in the rodent macrophage cultures, and treatment of RGAP in vivo stimulated tumoricidal activities of natural killer (NK) cells.

Synthesis, Characterization, and Thermal Degradation of Oligo-2-[(pyridin-4-yl-)methyleneamino]pyridine-3-ol and Oligomer-Metal Complexes (올리고피리디닐메틸렌아미노피리딘올과 금속 착화물의 합성, 분석 및 열분해 특성 연구)

  • Kaya, Ismet;Gul, Murat
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2008
  • This study examined the oxidative polycondensation reaction of 2-[(pyridin-4-yl-) methyleneamino] pyridine-3-ol (2-PMAP) using air $O_2$ and NaOCl oxidants at various temperatures and times in aqueous alkaline and acidic media. Under these reactions, the optimum reaction conditions using air $O_2$ and NaOCl oxidants were determined for 2-PMAP. The number-average molecular weight ($M_n$), weight average molecular weight ($M_w$), and polydispersity index (PDI) values of O-2-PMAP synthesized in aqueous alkaline media were found to be 960, 1230, and $1.281\;g\;mol^{-1}$ using NaOCl, and 1030, 1520, and $1.476\;g\;mol^{-1}$ using air $O_2$, respectively. At the optimum reaction conditions, the yield of O-2-PMAP in aqueous alkaline media was 92.50% and 85.70% for air $O_2$ and NaOCl oxidants, respectively. The yield of O-2-PMAP in aqueous acidic media was 88.5% and 88.0% for NaOCl and air $O_2$ oxidants, respectively. O-2-PMAP was characterized by $^1H-$, $^{13}C$-NMR, FT-IR, UV-vis, SEC, and elemental analysis. TGA-DTA analysis revealed O-2-PMAP and its oligomer metal complex compounds, such as $Co^{+2}$, $Ni^{+2}$, and $Cu^{+2}$, to be stable against thermal decomposition and their weight losses at $1000^{\circ}C$ were found to be 73.0, 58.0, 53.5%, and 50.0%, respectively. In addition, the antimicrobial activities of the monomer and oligomer were tested against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853), and S. Aureus (ATCC 25923).

Enhancement of Phenanthrene Sorption Rate on Natural Manganese Oxide Using the Oxidative Coupling Reaction of Phenanthrene (천연망간산화물에 의한 클로로페놀의 산화결합생성물을 매개로 한 다환방향족화합물(PAH) 오염물의 고정화 효과)

  • Jeon Sun-Young;Park Jae-Woo;Shin Won-Sik;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.45-51
    • /
    • 2005
  • The sorption/desorption characteristics of phenanthrene on the natural manganese oxide (NMD) were investigated in the presence of phenolic compounds. 4-chlorophenol (4-CP) was effectively oxidized by NMD catalyzed reaction and transformed into humic-like macromolecular compound through inter-or cross-coupling reaction between byproducts. As 4-CP was degraded with time, sorbed amount of phenanthrene on NMD was significantly increased, resulting from the formation of oxidative coupling products. These results imply that NMD can be used for simultaneous treatment of phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) in soils, sediments, or water. Also, sorbed phenanthrene on NMD in the presence of 4-CP showed high degree of desorption resistance, indicating that sequestration process of phenanthrene was ongoing with time.

A Study on Effective Removal Method of Odorant Smell in Natural Gas using Sodium Hypochlorite (차아염소산나트륨을 이용한 천연가스 부취냄새 효과적 탈취방법 연구)

  • Lim, Hyung-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.154-159
    • /
    • 2018
  • Intentional releases occur frequently during maintenance in gas supplying companies, which may result in unpleasant odors, and the possible mistaken belief of a gas accident. Therefore, this study developed a chemical process for effective odorant removal in natural gas using an active chemical that is released intentionally during maintenance and inspection. To develop an effective treatment process for removing the odorant from released natural gas, the effluent concentrations of the odorant in the released gas were measured after a chemical oxidation reaction with a sodium hypochlorite solution in a compact gas scrubbing equipment newly devised in this study. The device was based on a mixed gas vent after the solution inject odorant in the gas through the energy of the venting gas. The cascade combination of a venturi pipe and mixing chamber was developed to remove the odorant effectively from the purposely-released natural gas using an oxidative reaction between the mercaptan compounds (odorant) and the sodium hypochlorite solution. On the other hand, the developed method could be applied limitedly to a relatively small gas release from a low-pressure source. Further studies will be needed to apply the developed process to a large-scale gas release from a high-pressure source.

Kinetics of Ethyl Phenylcarbamate Synthesis by the Oxidative Carbonylation of Aniline (아닐린의 산화적 카르보닐화에 의한 에틸페닐카바메이트의 합성의 속도론적 고찰)

  • Park, Nae-Joung;Park, Jae-Keun
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.710-716
    • /
    • 1992
  • Ethylphenyl carbarmate(EPC) was synthesized by oxidative CO carbonylation of aniline in the presence of transition metal catalysts and alkali metal halide cocatalysts at $120^{\circ}C$ under the pressure of 79atm. Oxygen gas was used for oxidizing agent. Kinetics of the reaction was studied and activation energies with different catalysts were estimated. About 100% conversion to EPC and 95% selectivity was obtained in 5 hour reaction. 5% Pd/C was more effective than 5% Rh/C. Effectiveness of cocatalysts was in the order of KI>KBr>KCl. As the temperature increased from $75^{\circ}C$ to $120^{\circ}C$, the conversion rate increased. The reaction was apparent first order and the activation energies with 5% Pd/C and 5% Rh/C were 5.647 and 5.780 kcal/mol, respectively.

  • PDF

Polyaniline/SiO2 Catalyzed One-pot Mannich Reaction: An Efficient Synthesis of β-amino Carbonyl Compounds (Polyaniline/SiO2를 이용한 one-pot Mannich 반응: β-amino carbonyl 화합물의 효율적인 합성)

  • Yelwande, Ajeet A.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.644-649
    • /
    • 2011
  • Polyaniline/$SiO_2$ catalyzed one-pot mannich reaction of acetophenone, aromatic aldehydes and aromatic amines are carried out in ethanol to afford various ${\beta}$-amino ketones. The various wt% of polyaniline were supported on pure silica synthesized by using chemical oxidative method. The catalyst prepared has been characterized by means of thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR). Solvent stability of catalyst was tested using UV-Visible spectroscopy. This protocol has several advantages such as high yield, simple work up procedure, non-toxic, clean, easy recovery and reusability of the catalyst.

Studies on the Oxidative Addition Reactions of 1-Bromosilatranes to $SnBr_2$ (1-브로모실라트란의 $SnBr_2$ 에 대한 산화성 첨가반응 연구)

  • Kim, Myeong Un;Eo, Dong Seon;Sin, Ho Cheol;Kim, Jin Gwon;Do, Young Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.241-245
    • /
    • 1994
  • The oxidative addition reaction has been employed to synthesize heteropolynuclear compounds containing Si-M bonding interaction between the silicon atom of silatrane, pentacoordinate silicon derivative with transannular Si-N dative bond, and the main group element. The reaction of $SnBr_2 with 1-bromosilatrane(1a) in acetonitrile gives the mixture of yellow(2a) and white(2b) solids which were isolated and charaterized by ^1H-NMR, ^{29}Si-NMR, ^{119}Sn-NMR and Mass spectroscopy. The yellow compound was characterized as 1-tribromotinsilatrane which had Si-Sn bonding interaction. The reaction of SnBr2 with 1-bromo-3,7,10-trimethylsilatrane(1b) in methanol gives the Sn(Ⅳ) complex, N[CH_2CH(CH_3)O]_3SiSnBr_3(CH_3OH)_2(3),$ which was characterized by various means.

  • PDF