Reaction Conditions for Laccase Catalyzed Degradation of Bisphenol A

  • Kim, Young-Jin (Department of Civil Engineering and Applied Mechanics, McGill University)
  • Published : 2004.06.01

Abstract

The oxidative degradation of BPA with laccase from Trametes versiclor was conducted in a closed, temperature controlled system containing acetate buffer for pH control. The effects of medium pH, buffer concentration, temperature and mediator on degradation of BPA were investigated. The inactivation of the enzyme by temperature and reaction product was also studied. The optimal pH for BPA degradation showed about 5. Buffer concentration did not affect BPA degradation. On the other hand, the enzyme stability was higher at low concentration buffer(25 mM). Temperature rise increased the degradation rate of BPA up to 45$^{\circ}C$. The valuable mediator of laccase for BPA was ABTS. Elevated temperature and reaction product irreversibly inactivated the enzyme.

Keywords

References

  1. Perez, P., Pulgar, R., Olea-Serrano, F., Villalobos, M., Rivas, A., Metzler, M., Pedraza, V. and Olea, N. : The estrogenity of bisphenol A-related diphenylalkanes with various substituents at the cental carbon and hydroxy groups. Environ. Heatth Perspect., 106, 167-174, 1998 https://doi.org/10.2307/3434318
  2. Schafer, T., Lapp, C., Hanes, C., Lewis, J., Wataha, J. and Schuster, G. : Estrogenicity of bisphenol A and bisphenol A dimethacrylate in vitro. J. Biomed. Mater. Res., 45, 192-197, 1999 https://doi.org/10.1002/(SICI)1097-4636(19990605)45:3<192::AID-JBM5>3.0.CO;2-A
  3. Steinmetz, R., Mitchener, N. A., Grant, A., Allen, D. L., Bigsby, R. M. and Ben-Jonathan, N. : The xenoestrogen bisphenol A induces growth, differentation, and c-fos gene expression in the female reproductive tract. Endocrinotogy, 136, 2741-2747, 1998
  4. Mol, H. G. J., Sunarto, S. and Steijger, O. M. : Determination of endocrine disruptors in water after derivatization with N-methyl-N-(tert-butyldimethiltri-fluoroacetamide) using gas chromatography with mass spectrometric detection. J. Chromtogr. A, 879, 97-112, 2000 https://doi.org/10.1016/S0021-9673(00)00124-2
  5. Joshi, D. and Gold, M. : Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanemchaete chrysosporium. Appl. Envrin. Microbiol., 59, 1779-1785, 1993
  6. Levin, L., Viable, A. and Forchiassin, A. : Degradation of organic pollutants by white rot basidiomycete Trametes trogii. International Biodeterioration & Biodesradation, 52, 1-5, 2003 https://doi.org/10.1016/S0964-8305(02)00091-4
  7. AkataU, N., Kibarer, G. and Tanyolag, A.: Effects of reaction conditions laccase-catalyzed l-naphthol polymerization. J. Chem. Technol. Biotechnol., 75, 840-846, 2000 https://doi.org/10.1002/1097-4660(200009)75:9<840::AID-JCTB292>3.0.CO;2-9
  8. Gianfreda, L., Xu, F. and Bollag, M. : Laccases a useful group oxidoreductive enzymes. Bioremediation Journal, 3, 1-26, 1999 https://doi.org/10.1080/10889869991219163
  9. Wblfenden, B. S. and Wilson, R. L.: Radical cations as reference chromogens in kinetic studies of one-electron transfer reactions: pulse radiolysis of 2,2'-azinobis-(3-ethylbenz-thiazoline-6-sulphonate). J. Chem. Perkin. Trans., 2, 805-812, 1982
  10. Yaropolov, A. I., Skorobogatko, O. V, Vartanov, S. S. and Varfolomeyev, S. D. : Laccase properties, catalytic mechanism and applicability. Appt. Bioch. Biotech., 49, 257-279, 1994 https://doi.org/10.1007/BF02783061
  11. Okazaki, S., Michizoe, J., Goto, M., Furusaki, S., Wariishi, H. and Tanaka, H. : Oxidation of bisphenol A catalyzed laccase hosted in reverse micelles in organic media. Enzyme Microb. Technol., 31, 227-232, 2002 https://doi.org/10.1016/S0141-0229(02)00104-7
  12. Fukuda, T., Uchida, H., Takashima, Y., Uwajima, T., Kawabata, T. and Suzuki, M. : Degradation of Bisphenol A by PuriSed Laccase from Trametes villosa. Biochem. Biophys. Res. Commun., 284, 704-706, 2001 https://doi.org/10.1006/bbrc.2001.5021
  13. Takaka, T, Tonosaki, T., Nose, M., Tomidokoro, N., Kadomura, N., Fujii, T. and Taniguchi, M. : Treatment of Model Soil Contaminated with Phenolic Endorine-Disrupting Chemicals with Laccase from Trametes sp. in a Rotating Reactor J. Biosci. Bioen., 92(4), 312-316, 2001 https://doi.org/10.1016/S1389-1723(01)80232-2
  14. Akatas, N. and A. Tanyolac : Reaction conditions laccase-catalyzed polymerization of catechol. Bioresource Technotogy, 87, 209-214, 2003 https://doi.org/10.1016/S0960-8524(02)00254-7
  15. Hirano, T., Honda, Y., Watanabe, T. and Kuwahara, M. : Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, Produced by the white-rot basidiomycete, Pteumtus ostreatus. Biosci. Biotechnol Biochem., 64(9), 1958-1962, 2000 https://doi.org/10.1271/bbb.64.1958
  16. Uchida, H., Fukuda, T., Miyamoto, H., Kawabata, T.. Takashima, Y., Suzuki, M. and Uwajima, T.: Degradadon of Bisphenol A by Purified Laccase from Trametes villosa. Biochem. Biophys. Res. Commun., 287, 355-358, 2001 https://doi.org/10.1006/bbrc.2001.5593
  17. Chan, H. C., Holland, R. D., Bumpus, J. A., Churchwell, M. I. and Doerge, D. R. : Inactivation of Coprinus cinereus peroxidase by 4-chloroani1ine during turnover:compahson with horseradish peroxidase and bovine lactoperoxidase. Chem. Biol. Inter., 123, 197-217, 1999 https://doi.org/10.1016/S0009-2797(99)00136-2
  18. Aitken, M. D. and Heck, P. E. : Tumover capacity of Coprinus cinereus peroxidase for phenol and monosubstituted phenols. BiotechnoI. Prog., 14, 487-492, 1998 https://doi.org/10.1021/bp980034z
  19. Yaver, D. S., Xu, F,, Golightly, E. J., Brown, K. M., Rey, M. W., Schneider, P., Halkier, T., Mondorf, K. and Dalboge, H. : Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl. Environ. Microbial., 62, 834-841, 1996
  20. Barreca, A. M., Fabbrini, M. F., Galli, C., Gentili, P. and Ljunggren, S. : Laccase/mediated oxidation of a lignin model for improved delignification procedures. Joumal of Molecular Catalysis B: Enzymatic 26, 105-110, 2003 https://doi.org/10.1016/j.molcatb.2003.08.001