• Title/Summary/Keyword: Oxidative enzyme activities

Search Result 351, Processing Time 0.032 seconds

Antioxidative and antiproliferative activities of ethanol extracts from pigmented giant embryo rice (Oryza sativa L. cv. Keunnunjami) before and after germination

  • Chung, Soo Im;Lee, Sang Chul;Yi, Seong Joon;Kang, Mi Young
    • Nutrition Research and Practice
    • /
    • v.12 no.5
    • /
    • pp.365-370
    • /
    • 2018
  • BACKGROUND/OBJECTIVES Oxidative stress is a major cause of cancer. This study investigated the effects of the ethanol extracts from germinated and non-germinated Keunnunjami rice, a blackish-purple pigmented cultivar with giant embryo, on selected human cancer cell lines and on the antioxidant defense system of mice fed with a high-fat diet. MATERIALS/METHODS: High fat-fed mice were orally administered with either distilled water (HF) or extracts (0.25%, w/w) from brown (B), germinated brown (GB), Keunnunjami (K), and germinated Keunnunjami (GK) rice. RESULTS: In comparison with the brown rice extract, Keunnunjami extract showed higher anticancer effect against cervical and gastric cell lines but lower anticancer activity on liver and colon cancer cells. Mice from the HF group showed significantly higher lipid peroxidation and lower antioxidant enzyme activities than the control group. However, the oxidative stress induced by high-fat diet markedly decreased in B, GB, K, and GK groups as compared with the HF group. CONCLUSIONS: Germination may be an effective method for improving the anticancer and antioxidative properties of Keunnunjami rice and extracts from germinated Keunnunjami rice may serve as a therapeutic agent against cervical and gastric cancers and oxidative damage.

Effects of Circii Herba Aqua-Acupuncture (BL18, CV12) on Acute Oxidative Liver Injury (간유(肝兪).중완(中脘)의 대계(大?) 약침(藥鍼)이 급성 산화적 간손상에 미치는 효과)

  • Lee Jeong-Joo;Moon Jin-Young
    • Korean Journal of Acupuncture
    • /
    • v.20 no.4
    • /
    • pp.41-52
    • /
    • 2003
  • Objectives : Circii Herba has been used as a natural drug for the treatment of stress digestive system disease. The aim of this study is to investigate the role of Circii Herba aqua-acupuncture solution (CHAS) in experimental oxidative liver injury. Methods : In order to investigate the effects of CHAS on acute liver injury, male ICR mice were pretreated with CHAS(0.2 ml/mouse/day) at the loci of BL18 and CV12 for 6days, starved for 24hrs, and administerated acetaminophen(500 mg/kg, i.p.). After acetaminophen administeration, mice were sacrificed, and the liver was removed, rinsed with ice-cold $1.15{\%}$ KCI buffer, and homogenized at $4^{\circ}C$. Fractions(fraction Ⅰ, Ⅱ, Ⅲ) were isolated by differential centrifugation. Lipidperoxide, total SH, and glutathione(GSH) levels were measured in the Fraction Ⅰ. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GSH-Px) were measured in the Fraction Ⅱ, and glutathione S-transferase(GST) was measured in the Fraction Ⅲ. Results : In vivo treatment of CHAS(BL18 and CV12) showed effective inhibition of acetaminophen induced lipid peroxidation, and showed elevations of total SH, GSH level, catalase, GSH-Px, GST activities. Conclusions : These results suggested that CHAS might suppress the formation of oxidative metabolites, and prevent acetaminophen induced hepatotoxicity.

  • PDF

Effects of Apium graveolens Extract on the Oxidative Stress in the Liver of Adjuvant-Induced Arthritic Rats

  • Sukketsiri, Wanida;Chonpathompikunlert, Pennapa;Tanasawet, Supita;Choosri, Nutjanat;Wongtawatchai, Tulaporn
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • Apium graveolens Linn. (Apiaceae) is an indigenous plant of the North and South Americas, Southern Europe, and Asia and has been widely used as a food or a traditional medicine for treatment of inflammation and arthritis. The purpose of this study was to investigate the antioxidant effects of a methanolic extract of A. graveolens (AGE) against liver oxidative stress in an adjuvant-induced arthritic rat model. The AGE (250, 500, and 1,000 mg/kg) was given orally for 24 consecutive days after induction by injecting complete Freund's adjuvant. Liver and spleen weights were recorded. The superoxide anion level, total peroxide (TP), glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, total antioxidant status, and oxidative stress index (OSI) were also measured. AGE treatment significantly decreased the levels of the superoxide anion, TP, and OSI whereas the GPx and SOD activities significantly increased in the liver of the arthritic rats. These results indicated that AGE showed an ameliorative effect against liver oxidative stress in adjuvant-induced arthritic rats by reducing the generation of liver free radicals and increasing the liver antioxidant enzyme activity.

Molecular characterization of lysine 6-dehydrogenase from Achromobacter denitrificans

  • Ruldeekulthamrong, Prakarn;Maeda, Sayaka;Kato, Shin-ichiro;Shinji, Nagata;Sittipraneed, Siriporn;Packdibamrung, Kanoktip;Misono, Haruo
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.790-795
    • /
    • 2008
  • An inducible lysine 6-dehydrogenase (Lys 6-DH), which catalyzes the oxidative deamination of the 6-amino group of L-lysine in the presence of $NAD^+$, was purified to homogeneity from Achromobacter denitrificans, yielding a homodimeric protein of 80 kDa. The enzyme was specific for the substrate L-lysine and $NAD^+$ served as a cofactor. The dimeric enzyme associated into a hexamer in the presence of 10 mM L-lysine. The $K_m$ values for L-lysine and $NAD^+$ were 5.0 and 0.09 mM, respectively. The lys 6-dh gene was cloned and overexpressed in E. coli. The open reading frame was 1,107 nucleotides long and encoded a peptide containing 368 amino acids with 39,355 Da. The recombinant enzyme was purified to homogeneity and characterized. Enzyme activities and kinetic properties of the recombinant enzyme were almost the same as those of the endogenous enzyme obtained from A. denitrificans. Crystals of the enzyme were obtained using the hanging drop method.

Hepatoprotective Effects of Brassica rapa (Turnip) on d-Galactosamine Induced Liver Injured Rats (순무의 d-galactosamine 유발 간장해 보호효과)

  • Choi, Hyuck-Jae;Han, Myung-Joo;Baek, Nam-In;Kim, Dong-Hyun;Jung, Hae-Gon;Kim, Nam-Jae
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.4 s.147
    • /
    • pp.258-265
    • /
    • 2006
  • Brassica rapa L. (Turnip) which is one of the specialized crops in Ganghwa island, has been used for diuretic, digestive, and curative for jaundice, etc. In this study, the anti oxidative effects and hepatoprotective effects of turnip in vitro and in vivo were investigated in order to evaluate the possibility as hepatoprotective agents. Ethanol extract of turnip potently showed the scavenging effect on DPPH and inhibitory effect on lipid peroxidation. Oral administration of turnip extract to dgalactosamine-induced experimental liver injured rats was significantly reduced the serum AST, ALT and LDH enzyme activities. And the decrease of catalase and SOD activities in liver microsolmal cytosol was significantly improved by the treatment of turnip. Based on these findings, it is presumed that ethanol extract of turnip may have the hepatoprotective effect on d-galactosamine-induced hepatotoxicity rat.

Anti-Oxidative and Anti-Inflammatory Activities of Carpinus pubescens Burkill Extract in RAW 264.7 Cells (RAW 264.7 세포에서 Carpinus pubescens Burkill 추출물의 항산화 및 항염증 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.117-123
    • /
    • 2016
  • In this study, to evaluate the anti-oxidative and anti-inflammatory effects of Carpinus pubescens Burkill ethanol extract (CPEE), we performed the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reactive oxygen species (ROS) inhibition, and nitric oxide (NO) scavenging assays and an analysis of the related protein expressions. CPEE showed high DPPH radical scavenging activity and effectively increased ROS inhibition activity dose-dependently. Furthermore, CPEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 and its upstream transcription factor, nuclear factor-E2-related factor 2, in RAW 264.7 cells. CPEE was associated with a reduction in NO production, which was induced by lipopolysaccharide treatment in a dose-dependent manner. The expression of inducible nitric oxide synthase (iNOS), an upstream regulator of NO production, was also inhibited. Taken together, these results suggest that CPEE has anti-oxidative and anti-inflammatory activities and could be useful as a potential anti-oxidant and antiinflammatory agent.

Oxidative Stress and Antioxidant Activities of Intertidal Macroalgae in Korea

  • Park, Jung-Jin;Han, Tae-Jun;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • The oxidative stress level and antioxidant activities in two green algae (Ulva pertusa and Ulva linza), two brown algae (Agarum cribrosum and Dictyota dichotoma), and three red algae (Grateloupia lanceolata, Carpopeltis affinis, and Gracilaria verrucosa) collected from intertidal regions of Korea were assessed. In the two green algae, although the total glutathione content was not as high as that of the brown algae, the glutathione pool was extremely reduced, and the glutathione reductase (GRd)/glutathione peroxidase (GPx) activity ratio was high, which apparently plays an important role for protection against oxidative damage, as manifested by low lipid peroxidation. In the brown algae, which exhibited a low lipid peroxidation level that was comparable to the green algal species, the highest glutathione content, together with high GPx activity, appears to be the most important factor in their antioxidant protection. The red algal species exhibited extremely high lipid peroxidation levels. They also contained the lowest and most oxidized glutathione among the species, as well as the lowest GRd activity. In spite of the marked difference in the glutathione content, the significant difference in the activity of ${\gamma}$-glutamylcysteine ligase, the rate limiting enzyme for glutathione synthesis, among the species was not exhibited. Our results suggest that there is a significant difference in the levels of oxidative stress and antioxidant capacity among the algal species, and that the glutathione system, especially the efficiency of glutathione recycling, plays a vital role in antioxidative protection in algal species.

Protective Effects of the BuOH Fraction from Laminaria japonica Extract on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Park, Min-Jung;Song, Young-Sun;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.94-99
    • /
    • 2006
  • This study investigated the protective effect of the butanol (BuOH) fraction from Laminaria japonica (BFLJ) extract on high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). Freeze-dried L japonica was extracted with distilled water, and the extracted solution was mixed with ethanol then centrifuged. The supernatant was subjected to sequential fractionation with various solvents. The BuOH fraction was used in this study because it possessed the strongest antioxidant activity among the various solvent fractions. To determine the protective effect of the BFLJ, oxidative stress was induced by exposing of HUVECs to the high glucose (30 mM) or normal glucose (5.5 mM) for 48 hr. Cell viability, lipid peroxidation, glutathione (GSH) concentration, and antioxidant enzyme activities such as catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and glutathion reductase (GSH-re) were measured. Exposure of HUVECs to high glucose for 48 hr resulted in a significant (p<0.05) decrease in cell viability, SOD, GSH-px and GSH-re and a significant (p<0.05) increase in thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5.5 mM glucose or untreated with glucose. BFLJ treatment decreased TBARS formation and increased cell viability, GSH concentration, and activities of antioxidant enzymes including catalase, SOD, GSH-px, and GSH-re in high glucose pretreated HUVECs. These results suggest that BFLJ may be able to protect HUVECs from high glucose-induced oxidative stress, partially through the antioxidative defence systems.

Protective Effect of Sasa borealis Leaf Extract on AAPH-Induced Oxidative Stress in LLC-PK1 Cells

  • Hwang, Ji-Young;Lee, Hee-Seob;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • This study was designed to investigate the protective effect of Sasa borealis leaf extract on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). The butanol fraction from Sasa borealis leaf extract (SBBF) was used in this study because it possessed strong antioxidant activity and high yield among fractions. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant decrease in cell viability, but SBBF treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To determine the protective action of SBBF against AAPH-induced damage of LLC-PK1 cells, we measured the effects of SBBF on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. SBBF had a protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, SBBF showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of SBBF was $28.45{\pm}1.28\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The SBBF also had high hydroxyl radical scavenging activity ($IC_{50}=31.09{\pm}3.08\;{\mu}g/mL$). These results indicate that SBBF protects AAPH-induced LLC-PK1 cells damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging free radicals.

Effect of Vitamin A and $B_2$ Derivatives on Aminopyrine Demethylase Activity (비타민 A 및 $B_2$ 유도체의 Aminopyrine Demethylase 활성도에 대한 영향)

  • 이향우
    • YAKHAK HOEJI
    • /
    • v.28 no.1
    • /
    • pp.53-59
    • /
    • 1984
  • Drug-metabolizing system which has the important role in drug metabolism is localized in smooth endoplasmic reticulum of hepatocytes and is composed of NADPH, NADPH-cytochrome $P_{450}$ reductase, cytochrome $P_{450}$ and others. It is well known that the enzyme system is induced by phenobarbital and methylcholanthrene. Lipid peroxidation is reaction of oxidative deterioration of polyunsaturated lipids. Formation of lipid peroxides in liver microsome has been found to produce degradation of phospholipid, which are major components of microsomal membrane. The relationship between the formation of lipid oxides and the activities of drug-metabolizing enzyme in the liver of rats was reported by several investigators. In this study the effect of riboflavin tetrabutylate, an antioxidant on lipid peroxidation, specially the relationship between lipid peroxidation and drug-metabolizing enzyme system was investigated. In addition the effect of vitamin A derivatives, such as retinoic acid and retinoid on the enzyme was also observed. Results are summarized as followings. 1) The pretretment with riboflavin tetrabutylate inhibited completely the lengthened sleeping time due to $CCl_{4}$ treatment. 2) The increase of TBA value was prevented by the pretreatment with riboflavin tetrabutylate. 3) The pretreatment with riboflavin tetrabutylate also prevented the decrease of drug-metabolizing enzyme caused by $CCl_{4}$. 4) Both retinoic acid and retinoid remarkably decreased the activity of aminopyrine demethylase. Pretreatment of riboflavin tetrabutylate, however, prevented inhibitory effect of retinoic acid on the enzyme activity.

  • PDF